当前位置: 首页>>代码示例>>Python>>正文


Python DataSelectionApplet.parse_known_cmdline_args方法代码示例

本文整理汇总了Python中ilastik.applets.dataSelection.DataSelectionApplet.parse_known_cmdline_args方法的典型用法代码示例。如果您正苦于以下问题:Python DataSelectionApplet.parse_known_cmdline_args方法的具体用法?Python DataSelectionApplet.parse_known_cmdline_args怎么用?Python DataSelectionApplet.parse_known_cmdline_args使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在ilastik.applets.dataSelection.DataSelectionApplet的用法示例。


在下文中一共展示了DataSelectionApplet.parse_known_cmdline_args方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: onProjectLoaded

# 需要导入模块: from ilastik.applets.dataSelection import DataSelectionApplet [as 别名]
# 或者: from ilastik.applets.dataSelection.DataSelectionApplet import parse_known_cmdline_args [as 别名]
    def onProjectLoaded(self, projectManager):
        """
        Overridden from Workflow base class.  Called by the Project Manager.

        If the user provided command-line arguments, apply them to the workflow operators.
        Currently, we support command-line configuration of:
        - DataSelection
        - Preprocessing, in which case preprocessing is immediately executed
        """
        # If input data files were provided on the command line, configure the DataSelection applet now.
        # (Otherwise, we assume the project already had a dataset selected.)
        input_data_args, unused_args = DataSelectionApplet.parse_known_cmdline_args(self.workflow_cmdline_args, DATA_ROLES)
        if input_data_args.raw_data:
            self.dataSelectionApplet.configure_operator_with_parsed_args(input_data_args)

        #
        # Parse the remaining cmd-line arguments
        #
        filter_indexes = { 'bright-lines' : OpFilter.HESSIAN_BRIGHT,
                           'dark-lines'   : OpFilter.HESSIAN_DARK,
                           'step-edges'   : OpFilter.STEP_EDGES,
                           'original'     : OpFilter.RAW,
                           'inverted'     : OpFilter.RAW_INVERTED }

        parser = argparse.ArgumentParser()
        parser.add_argument('--run-preprocessing', action='store_true')
        parser.add_argument('--preprocessing-sigma', type=float, required=False)
        parser.add_argument('--preprocessing-filter', required=False, type=str.lower,
                            choices=filter_indexes.keys())

        parsed_args, unused_args = parser.parse_known_args(unused_args)
        if unused_args:
            logger.warn("Did not use the following command-line arguments: {}".format(unused_args))

        # Execute pre-processing.
        if parsed_args.run_preprocessing:
            if len(self.preprocessingApplet.topLevelOperator) != 1:
                raise RuntimeError("Can't run preprocessing on a project with no images.")

            opPreprocessing = self.preprocessingApplet.topLevelOperator.getLane(0) # Carving has only one 'lane'

            # If user provided parameters, override the defaults.
            if parsed_args.preprocessing_sigma is not None:
                opPreprocessing.Sigma.setValue(parsed_args.preprocessing_sigma)

            if parsed_args.preprocessing_filter:
                filter_index = filter_indexes[parsed_args.preprocessing_filter]
                opPreprocessing.Filter.setValue(filter_index)

            logger.info("Running Preprocessing...")
            opPreprocessing.PreprocessedData[:].wait()
            logger.info("FINISHED Preprocessing...")

            logger.info("Saving project...")
            self._shell.projectManager.saveProject()
            logger.info("Done saving.")
开发者ID:CVML,项目名称:ilastik,代码行数:58,代码来源:carvingWorkflow.py

示例2: parse_known_cmdline_args

# 需要导入模块: from ilastik.applets.dataSelection import DataSelectionApplet [as 别名]
# 或者: from ilastik.applets.dataSelection.DataSelectionApplet import parse_known_cmdline_args [as 别名]
 def parse_known_cmdline_args(self, cmdline_args):
     # We use the same parser as the DataSelectionApplet
     role_names = self.dataSelectionApplet.topLevelOperator.DatasetRoles.value
     parsed_args, unused_args = DataSelectionApplet.parse_known_cmdline_args(cmdline_args, role_names)
     return parsed_args, unused_args
开发者ID:slzephyr,项目名称:ilastik,代码行数:7,代码来源:batchProcessingApplet.py

示例3: PixelClassificationWorkflow

# 需要导入模块: from ilastik.applets.dataSelection import DataSelectionApplet [as 别名]
# 或者: from ilastik.applets.dataSelection.DataSelectionApplet import parse_known_cmdline_args [as 别名]

#.........这里部分代码省略.........
        self.dataExportApplet = PixelClassificationDataExportApplet(self, "Prediction Export")
        opDataExport = self.dataExportApplet.topLevelOperator
        opDataExport.PmapColors.connect( opClassify.PmapColors )
        opDataExport.LabelNames.connect( opClassify.LabelNames )
        opDataExport.WorkingDirectory.connect( opDataSelection.WorkingDirectory )
        opDataExport.SelectionNames.setValue( self.EXPORT_NAMES )        

        # Expose for shell
        self._applets.append(self.projectMetadataApplet)
        self._applets.append(self.dataSelectionApplet)
        self._applets.append(self.featureSelectionApplet)
        self._applets.append(self.pcApplet)
        self._applets.append(self.dataExportApplet)

        self._batch_input_args = None
        self._batch_export_args = None

        self.batchInputApplet = None
        self.batchResultsApplet = None
        if appendBatchOperators:
            # Create applets for batch workflow
            self.batchInputApplet = DataSelectionApplet(self, "Batch Prediction Input Selections", "Batch Inputs", supportIlastik05Import=False, batchDataGui=True)
            self.batchResultsApplet = PixelClassificationDataExportApplet(self, "Batch Prediction Output Locations", isBatch=True)
    
            # Expose in shell        
            self._applets.append(self.batchInputApplet)
            self._applets.append(self.batchResultsApplet)
    
            # Connect batch workflow (NOT lane-based)
            self._initBatchWorkflow()

            if unused_args:
                # We parse the export setting args first.  All remaining args are considered input files by the input applet.
                self._batch_export_args, unused_args = self.batchResultsApplet.parse_known_cmdline_args( unused_args )
                self._batch_input_args, unused_args = self.batchInputApplet.parse_known_cmdline_args( unused_args )
    
        if unused_args:
            logger.warn("Unused command-line args: {}".format( unused_args ))

    def connectLane(self, laneIndex):
        # Get a handle to each operator
        opData = self.dataSelectionApplet.topLevelOperator.getLane(laneIndex)
        opTrainingFeatures = self.featureSelectionApplet.topLevelOperator.getLane(laneIndex)
        opClassify = self.pcApplet.topLevelOperator.getLane(laneIndex)
        opDataExport = self.dataExportApplet.topLevelOperator.getLane(laneIndex)
        
        # Input Image -> Feature Op
        #         and -> Classification Op (for display)
        opTrainingFeatures.InputImage.connect( opData.Image )
        opClassify.InputImages.connect( opData.Image )
        
        if ilastik_config.getboolean('ilastik', 'debug'):
            opClassify.PredictionMasks.connect( opData.ImageGroup[self.DATA_ROLE_PREDICTION_MASK] )
        
        # Feature Images -> Classification Op (for training, prediction)
        opClassify.FeatureImages.connect( opTrainingFeatures.OutputImage )
        opClassify.CachedFeatureImages.connect( opTrainingFeatures.CachedOutputImage )
        
        # Training flags -> Classification Op (for GUI restrictions)
        opClassify.LabelsAllowedFlags.connect( opData.AllowLabels )

        # Data Export connections
        opDataExport.RawData.connect( opData.ImageGroup[self.DATA_ROLE_RAW] )
        opDataExport.RawDatasetInfo.connect( opData.DatasetGroup[self.DATA_ROLE_RAW] )
        opDataExport.ConstraintDataset.connect( opData.ImageGroup[self.DATA_ROLE_RAW] )
        opDataExport.Inputs.resize( len(self.EXPORT_NAMES) )
开发者ID:fdiego,项目名称:ilastik,代码行数:70,代码来源:pixelClassificationWorkflow.py

示例4: DataConversionWorkflow

# 需要导入模块: from ilastik.applets.dataSelection import DataSelectionApplet [as 别名]
# 或者: from ilastik.applets.dataSelection.DataSelectionApplet import parse_known_cmdline_args [as 别名]
class DataConversionWorkflow(Workflow):
    """
    Simple workflow for converting data between formats.  Has only two applets: Data Selection and Data Export.
    
    Also supports a command-line interface for headless mode.
    
    For example:
    
    .. code-block:: bash

        python ilastik.py --headless --new_project=NewTemporaryProject.ilp --workflow=DataConversionWorkflow --output_format="png sequence" ~/input1.h5 ~/input2.h5
    
    Or if you have an existing project with input files already selected and configured:

    .. code-block:: bash

        python ilastik.py --headless --project=MyProject.ilp --output_format=jpeg
    
    .. note:: Beware of issues related to absolute vs. relative paths.  Relative links are stored relative to the project file.
              To avoid this issue entirely, either 
                 (1) use only absolute filepaths
              or (2) cd into your project file's directory before launching ilastik.
    
    """
    def __init__(self, shell, headless, workflow_cmdline_args, project_creation_args, *args, **kwargs):

        
        # Create a graph to be shared by all operators
        graph = Graph()
        super(DataConversionWorkflow, self).__init__(shell, headless, workflow_cmdline_args, project_creation_args, graph=graph, *args, **kwargs)
        self._applets = []

        # Create applets 
        self.dataSelectionApplet = DataSelectionApplet(self, 
                                                       "Input Data", 
                                                       "Input Data", 
                                                       supportIlastik05Import=True, 
                                                       batchDataGui=False,
                                                       force5d=False)

        opDataSelection = self.dataSelectionApplet.topLevelOperator
        role_names = ["Input Data"]
        opDataSelection.DatasetRoles.setValue( role_names )

        self.dataExportApplet = DataExportApplet(self, "Data Export")

        opDataExport = self.dataExportApplet.topLevelOperator
        opDataExport.WorkingDirectory.connect( opDataSelection.WorkingDirectory )
        opDataExport.SelectionNames.setValue( ["Input"] )        

        self._applets.append( self.dataSelectionApplet )
        self._applets.append( self.dataExportApplet )

        # Parse command-line arguments
        # Command-line args are applied in onProjectLoaded(), below.
        self._workflow_cmdline_args = workflow_cmdline_args
        self._data_input_args = None
        self._data_export_args = None
        if workflow_cmdline_args:
            self._data_export_args, unused_args = self.dataExportApplet.parse_known_cmdline_args( unused_args )
            self._data_input_args, unused_args = self.dataSelectionApplet.parse_known_cmdline_args( workflow_cmdline_args, role_names )
            if unused_args:
                logger.warn("Unused command-line args: {}".format( unused_args ))

    def onProjectLoaded(self, projectManager):
        """
        Overridden from Workflow base class.  Called by the Project Manager.
        
        If the user provided command-line arguments, use them to configure 
        the workflow inputs and output settings.
        """
        # Configure the batch data selection operator.
        if self._data_input_args and self._data_input_args.input_files:
            self.dataSelectionApplet.configure_operator_with_parsed_args( self._data_input_args )
        
        # Configure the data export operator.
        if self._data_export_args:
            self.dataExportApplet.configure_operator_with_parsed_args( self._data_export_args )

        if self._headless and self._data_input_args and self._data_export_args:
            # Now run the export and report progress....
            opDataExport = self.dataExportApplet.topLevelOperator
            for i, opExportDataLaneView in enumerate(opDataExport):
                logger.info( "Exporting file #{} to {}".format(i, opExportDataLaneView.ExportPath.value) )
    
                sys.stdout.write( "Result #{}/{} Progress: ".format( i, len( opDataExport ) ) )
                def print_progress( progress ):
                    sys.stdout.write( "{} ".format( progress ) )
    
                # If the operator provides a progress signal, use it.
                slotProgressSignal = opExportDataLaneView.progressSignal
                slotProgressSignal.subscribe( print_progress )
                opExportDataLaneView.run_export()
                
                # Finished.
                sys.stdout.write("\n")

    def connectLane(self, laneIndex):
        opDataSelectionView = self.dataSelectionApplet.topLevelOperator.getLane(laneIndex)
        opDataExportView = self.dataExportApplet.topLevelOperator.getLane(laneIndex)
#.........这里部分代码省略.........
开发者ID:stuarteberg,项目名称:ilastik,代码行数:103,代码来源:dataConversionWorkflow.py

示例5: WsdtWorkflow

# 需要导入模块: from ilastik.applets.dataSelection import DataSelectionApplet [as 别名]
# 或者: from ilastik.applets.dataSelection.DataSelectionApplet import parse_known_cmdline_args [as 别名]
class WsdtWorkflow(Workflow):
    workflowName = "Watershed Over Distance Transform"
    workflowDescription = "A bare-bones workflow for using the WSDT applet"
    defaultAppletIndex = 0 # show DataSelection by default

    DATA_ROLE_RAW = 0
    DATA_ROLE_PROBABILITIES = 1
    ROLE_NAMES = ['Raw Data', 'Probabilities']
    EXPORT_NAMES = ['Watershed']

    @property
    def applets(self):
        return self._applets

    @property
    def imageNameListSlot(self):
        return self.dataSelectionApplet.topLevelOperator.ImageName

    def __init__(self, shell, headless, workflow_cmdline_args, project_creation_workflow, *args, **kwargs):
        # Create a graph to be shared by all operators
        graph = Graph()

        super(WsdtWorkflow, self).__init__( shell, headless, workflow_cmdline_args, project_creation_workflow, graph=graph, *args, **kwargs)
        self._applets = []

        # -- DataSelection applet
        #
        self.dataSelectionApplet = DataSelectionApplet(self, "Input Data", "Input Data")

        # Dataset inputs
        opDataSelection = self.dataSelectionApplet.topLevelOperator
        opDataSelection.DatasetRoles.setValue( self.ROLE_NAMES )

        # -- Wsdt applet
        #
        self.wsdtApplet = WsdtApplet(self, "Watershed", "Wsdt Watershed")

        # -- DataExport applet
        #
        self.dataExportApplet = DataExportApplet(self, "Data Export")

        # Configure global DataExport settings
        opDataExport = self.dataExportApplet.topLevelOperator
        opDataExport.WorkingDirectory.connect( opDataSelection.WorkingDirectory )
        opDataExport.SelectionNames.setValue( self.EXPORT_NAMES )

        # -- BatchProcessing applet
        #
        self.batchProcessingApplet = BatchProcessingApplet(self,
                                                           "Batch Processing",
                                                           self.dataSelectionApplet,
                                                           self.dataExportApplet)

        # -- Expose applets to shell
        self._applets.append(self.dataSelectionApplet)
        self._applets.append(self.wsdtApplet)
        self._applets.append(self.dataExportApplet)
        self._applets.append(self.batchProcessingApplet)

        # -- Parse command-line arguments
        #    (Command-line args are applied in onProjectLoaded(), below.)
        if workflow_cmdline_args:
            self._data_export_args, unused_args = self.dataExportApplet.parse_known_cmdline_args( workflow_cmdline_args )
            self._batch_input_args, unused_args = self.dataSelectionApplet.parse_known_cmdline_args( unused_args, role_names )
        else:
            unused_args = None
            self._batch_input_args = None
            self._data_export_args = None

        if unused_args:
            logger.warning("Unused command-line args: {}".format( unused_args ))

    def connectLane(self, laneIndex):
        """
        Override from base class.
        """
        opDataSelection = self.dataSelectionApplet.topLevelOperator.getLane(laneIndex)
        opWsdt = self.wsdtApplet.topLevelOperator.getLane(laneIndex)
        opDataExport = self.dataExportApplet.topLevelOperator.getLane(laneIndex)

        # watershed inputs
        opWsdt.RawData.connect( opDataSelection.ImageGroup[self.DATA_ROLE_RAW] )
        opWsdt.Input.connect( opDataSelection.ImageGroup[self.DATA_ROLE_PROBABILITIES] )

        # DataExport inputs
        opDataExport.RawData.connect( opDataSelection.ImageGroup[self.DATA_ROLE_RAW] )
        opDataExport.RawDatasetInfo.connect( opDataSelection.DatasetGroup[self.DATA_ROLE_RAW] )        
        opDataExport.Inputs.resize( len(self.EXPORT_NAMES) )
        opDataExport.Inputs[0].connect( opWsdt.Superpixels )
        for slot in opDataExport.Inputs:
            assert slot.partner is not None
        
    def onProjectLoaded(self, projectManager):
        """
        Overridden from Workflow base class.  Called by the Project Manager.
        
        If the user provided command-line arguments, use them to configure 
        the workflow inputs and output settings.
        """
        # Configure the data export operator.
#.........这里部分代码省略.........
开发者ID:DerThorsten,项目名称:ilastik,代码行数:103,代码来源:wsdtWorkflow.py

示例6: DataConversionWorkflow

# 需要导入模块: from ilastik.applets.dataSelection import DataSelectionApplet [as 别名]
# 或者: from ilastik.applets.dataSelection.DataSelectionApplet import parse_known_cmdline_args [as 别名]
class DataConversionWorkflow(Workflow):
    """
    Simple workflow for converting data between formats.
    Has only two 'interactive' applets (Data Selection and Data Export), plus the BatchProcessing applet.    

    Supports headless mode. For example:
    
    .. code-block::

        python ilastik.py --headless 
                          --new_project=NewTemporaryProject.ilp
                          --workflow=DataConversionWorkflow
                          --output_format="png sequence"
                          ~/input1.h5
                          ~/input2.h5

    .. note:: Beware of issues related to absolute vs. relative paths.
              Relative links are stored relative to the project file.

              To avoid this issue entirely, either 
                 (1) use only absolute filepaths
              or (2) cd into your project file's directory before launching ilastik.
    
    """
    def __init__(self, shell, headless, workflow_cmdline_args, project_creation_args, *args, **kwargs):

        
        # Create a graph to be shared by all operators
        graph = Graph()
        super(DataConversionWorkflow, self).__init__(shell, headless, workflow_cmdline_args, project_creation_args, graph=graph, *args, **kwargs)
        self._applets = []

        # Instantiate DataSelection applet
        self.dataSelectionApplet = DataSelectionApplet(self, 
                                                       "Input Data", 
                                                       "Input Data", 
                                                       supportIlastik05Import=True)

        # Configure global DataSelection settings
        role_names = ["Input Data"]
        opDataSelection = self.dataSelectionApplet.topLevelOperator
        opDataSelection.DatasetRoles.setValue( role_names )

        # Instantiate DataExport applet
        self.dataExportApplet = DataExportApplet(self, "Data Export")

        # Configure global DataExport settings
        opDataExport = self.dataExportApplet.topLevelOperator
        opDataExport.WorkingDirectory.connect( opDataSelection.WorkingDirectory )
        opDataExport.SelectionNames.setValue( ["Input"] )        

        # No special data pre/post processing necessary in this workflow, 
        #   but this is where we'd hook it up if we needed it.
        #
        #self.dataExportApplet.prepare_for_entire_export = self.prepare_for_entire_export
        #self.dataExportApplet.prepare_lane_for_export = self.prepare_lane_for_export
        #self.dataExportApplet.post_process_lane_export = self.post_process_lane_export
        #self.dataExportApplet.post_process_entire_export = self.post_process_entire_export

        # Instantiate BatchProcessing applet
        self.batchProcessingApplet = BatchProcessingApplet(self, 
                                                           "Batch Processing", 
                                                           self.dataSelectionApplet, 
                                                           self.dataExportApplet)

        # Expose our applets in a list (for the shell to use)
        self._applets.append( self.dataSelectionApplet )
        self._applets.append( self.dataExportApplet )
        self._applets.append(self.batchProcessingApplet)

        # Parse command-line arguments
        # Command-line args are applied in onProjectLoaded(), below.
        if workflow_cmdline_args:
            self._data_export_args, unused_args = self.dataExportApplet.parse_known_cmdline_args( workflow_cmdline_args )
            self._batch_input_args, unused_args = self.dataSelectionApplet.parse_known_cmdline_args( unused_args, role_names )
        else:
            unused_args = None
            self._batch_input_args = None
            self._data_export_args = None

        if unused_args:
            logger.warn("Unused command-line args: {}".format( unused_args ))

    @property
    def applets(self):
        """
        Overridden from Workflow base class.
        """
        return self._applets

    @property
    def imageNameListSlot(self):
        """
        Overridden from Workflow base class.
        """
        return self.dataSelectionApplet.topLevelOperator.ImageName

    def prepareForNewLane(self, laneIndex):
        """
        Overridden from Workflow base class.
#.........这里部分代码省略.........
开发者ID:CVML,项目名称:ilastik,代码行数:103,代码来源:dataConversionWorkflow.py

示例7: ObjectClassificationWorkflow

# 需要导入模块: from ilastik.applets.dataSelection import DataSelectionApplet [as 别名]
# 或者: from ilastik.applets.dataSelection.DataSelectionApplet import parse_known_cmdline_args [as 别名]

#.........这里部分代码省略.........
    
            self.blockwiseObjectClassificationApplet = BlockwiseObjectClassificationApplet(
                self, "Blockwise Object Classification", "Blockwise Object Classification")
            self._applets.append(self.blockwiseObjectClassificationApplet)

            self.batchExportApplet = ObjectClassificationDataExportApplet(
                self, "Batch Object Prediction Export", isBatch=True)
        
            opBatchDataExport = self.batchExportApplet.topLevelOperator
            opBatchDataExport.WorkingDirectory.connect( self.dataSelectionApplet.topLevelOperator.WorkingDirectory )

            self._applets.append(self.dataSelectionAppletBatch)
            self._applets.append(self.batchExportApplet)

            self._initBatchWorkflow()

            self._batch_export_args = None
            self._batch_input_args = None
            if unused_args:
                # Additional export args (specific to the object classification workflow)
                export_arg_parser = argparse.ArgumentParser()
                export_arg_parser.add_argument( "--table_filename", help="The location to export the object feature/prediction CSV file.", required=False )
                export_arg_parser.add_argument( "--export_object_prediction_img", action="store_true" )
                export_arg_parser.add_argument( "--export_object_probability_img", action="store_true" )

                # TODO: Support this, too, someday?
                #export_arg_parser.add_argument( "--export_object_label_img", action="store_true" )
                
                if self.input_types == 'raw':
                    export_arg_parser.add_argument( "--export_pixel_probability_img", action="store_true" )
                self._export_args, unused_args = export_arg_parser.parse_known_args(unused_args)

                # We parse the export setting args first.  All remaining args are considered input files by the input applet.
                self._batch_export_args, unused_args = self.batchExportApplet.parse_known_cmdline_args( unused_args )
                self._batch_input_args, unused_args = self.dataSelectionAppletBatch.parse_known_cmdline_args( unused_args )

        if unused_args:
            warnings.warn("Unused command-line args: {}".format( unused_args ))

    @property
    def applets(self):
        return self._applets

    @property
    def imageNameListSlot(self):
        return self.dataSelectionApplet.topLevelOperator.ImageName

    def connectLane(self, laneIndex):
        rawslot, binaryslot = self.connectInputs(laneIndex)

        opData = self.dataSelectionApplet.topLevelOperator.getLane(laneIndex)

        opObjExtraction = self.objectExtractionApplet.topLevelOperator.getLane(laneIndex)
        opObjClassification = self.objectClassificationApplet.topLevelOperator.getLane(laneIndex)
        opDataExport = self.dataExportApplet.topLevelOperator.getLane(laneIndex)

        opObjExtraction.RawImage.connect(rawslot)
        opObjExtraction.BinaryImage.connect(binaryslot)

        opObjClassification.RawImages.connect(rawslot)
        opObjClassification.LabelsAllowedFlags.connect(opData.AllowLabels)
        opObjClassification.BinaryImages.connect(binaryslot)

        opObjClassification.SegmentationImages.connect(opObjExtraction.LabelImage)
        opObjClassification.ObjectFeatures.connect(opObjExtraction.RegionFeatures)
        opObjClassification.ComputedFeatureNames.connect(opObjExtraction.ComputedFeatureNames)
开发者ID:jakirkham,项目名称:ilastik,代码行数:70,代码来源:objectClassificationWorkflow.py

示例8: ObjectClassificationWorkflow

# 需要导入模块: from ilastik.applets.dataSelection import DataSelectionApplet [as 别名]
# 或者: from ilastik.applets.dataSelection.DataSelectionApplet import parse_known_cmdline_args [as 别名]

#.........这里部分代码省略.........
            else:
                assert False, "Unknown object classification subclass type."
    
            self.blockwiseObjectClassificationApplet = BlockwiseObjectClassificationApplet(
                self, "Blockwise Object Classification", "Blockwise Object Classification")
            self._applets.append(self.blockwiseObjectClassificationApplet)

            self.batchExportApplet = ObjectClassificationDataExportApplet(
                self, "Batch Object Prediction Export", isBatch=True)
        
            opBatchDataExport = self.batchExportApplet.topLevelOperator
            opBatchDataExport.WorkingDirectory.connect( self.dataSelectionApplet.topLevelOperator.WorkingDirectory )

            self._applets.append(self.dataSelectionAppletBatch)
            self._applets.append(self.batchExportApplet)

            self._initBatchWorkflow()

            if unused_args:
                # Additional export args (specific to the object classification workflow)
                export_arg_parser = argparse.ArgumentParser()
                export_arg_parser.add_argument( "--table_filename", help="The location to export the object feature/prediction CSV file.", required=False )
                export_arg_parser.add_argument( "--export_object_prediction_img", action="store_true" )
                export_arg_parser.add_argument( "--export_object_probability_img", action="store_true" )

                # TODO: Support this, too, someday?
                #export_arg_parser.add_argument( "--export_object_label_img", action="store_true" )
                
                if self.input_types == 'raw':
                    export_arg_parser.add_argument( "--export_pixel_probability_img", action="store_true" )
                self._export_args, unused_args = export_arg_parser.parse_known_args(unused_args)

                # We parse the export setting args first.  All remaining args are considered input files by the input applet.
                self._batch_export_args, unused_args = self.batchExportApplet.parse_known_cmdline_args( unused_args )
                self._batch_input_args, unused_args = self.dataSelectionAppletBatch.parse_known_cmdline_args( unused_args )

        if unused_args:
            warnings.warn("Unused command-line args: {}".format( unused_args ))

    @property
    def applets(self):
        return self._applets

    @property
    def imageNameListSlot(self):
        return self.dataSelectionApplet.topLevelOperator.ImageName

    def connectLane(self, laneIndex):
        rawslot, binaryslot = self.connectInputs(laneIndex)

        opData = self.dataSelectionApplet.topLevelOperator.getLane(laneIndex)

        opObjExtraction = self.objectExtractionApplet.topLevelOperator.getLane(laneIndex)
        opObjClassification = self.objectClassificationApplet.topLevelOperator.getLane(laneIndex)
        opDataExport = self.dataExportApplet.topLevelOperator.getLane(laneIndex)

        opObjExtraction.RawImage.connect(rawslot)
        opObjExtraction.BinaryImage.connect(binaryslot)

        opObjClassification.RawImages.connect(rawslot)
        opObjClassification.LabelsAllowedFlags.connect(opData.AllowLabels)
        opObjClassification.BinaryImages.connect(binaryslot)

        opObjClassification.SegmentationImages.connect(opObjExtraction.LabelImage)
        opObjClassification.ObjectFeatures.connect(opObjExtraction.RegionFeatures)
        opObjClassification.ComputedFeatureNames.connect(opObjExtraction.ComputedFeatureNames)
开发者ID:ilastikdev,项目名称:ilastik,代码行数:70,代码来源:objectClassificationWorkflow.py

示例9: PixelClassificationWorkflow

# 需要导入模块: from ilastik.applets.dataSelection import DataSelectionApplet [as 别名]
# 或者: from ilastik.applets.dataSelection.DataSelectionApplet import parse_known_cmdline_args [as 别名]
class PixelClassificationWorkflow(Workflow):
    
    workflowName = "Pixel Classification"
    workflowDescription = "This is obviously self-explanoratory."
    defaultAppletIndex = 1 # show DataSelection by default
    
    @property
    def applets(self):
        return self._applets

    @property
    def imageNameListSlot(self):
        return self.dataSelectionApplet.topLevelOperator.ImageName

    def __init__(self, shell, headless, workflow_cmdline_args, appendBatchOperators=True, *args, **kwargs):
        # Create a graph to be shared by all operators
        graph = Graph()
        super( PixelClassificationWorkflow, self ).__init__( shell, headless, graph=graph, *args, **kwargs )
        self._applets = []
        self._workflow_cmdline_args = workflow_cmdline_args

        data_instructions = "Select your input data using the 'Raw Data' tab shown on the right"

        # Parse workflow-specific command-line args
        parser = argparse.ArgumentParser()
        parser.add_argument('--filter', help="pixel feature filter implementation.", choices=['Original', 'Refactored', 'Interpolated'], default='Original')
        parsed_args, unused_args = parser.parse_known_args(workflow_cmdline_args)
        self.filter_implementation = parsed_args.filter
        
        # Applets for training (interactive) workflow 
        self.projectMetadataApplet = ProjectMetadataApplet()
        self.dataSelectionApplet = DataSelectionApplet( self,
                                                        "Input Data",
                                                        "Input Data",
                                                        supportIlastik05Import=True,
                                                        batchDataGui=False,
                                                        instructionText=data_instructions )
        opDataSelection = self.dataSelectionApplet.topLevelOperator
        opDataSelection.DatasetRoles.setValue( ['Raw Data'] )

        self.featureSelectionApplet = FeatureSelectionApplet(self, "Feature Selection", "FeatureSelections", self.filter_implementation)

        self.pcApplet = PixelClassificationApplet(self, "PixelClassification")
        opClassify = self.pcApplet.topLevelOperator

        self.dataExportApplet = PixelClassificationDataExportApplet(self, "Prediction Export")
        opDataExport = self.dataExportApplet.topLevelOperator
        opDataExport.PmapColors.connect( opClassify.PmapColors )
        opDataExport.LabelNames.connect( opClassify.LabelNames )
        opDataExport.WorkingDirectory.connect( opDataSelection.WorkingDirectory )

        # Expose for shell
        self._applets.append(self.projectMetadataApplet)
        self._applets.append(self.dataSelectionApplet)
        self._applets.append(self.featureSelectionApplet)
        self._applets.append(self.pcApplet)
        self._applets.append(self.dataExportApplet)

        self._batch_input_args = None
        self._batch_export_args = None

        self.batchInputApplet = None
        self.batchResultsApplet = None
        if appendBatchOperators:
            # Create applets for batch workflow
            self.batchInputApplet = DataSelectionApplet(self, "Batch Prediction Input Selections", "Batch Inputs", supportIlastik05Import=False, batchDataGui=True)
            self.batchResultsApplet = PixelClassificationDataExportApplet(self, "Batch Prediction Output Locations", isBatch=True)
    
            # Expose in shell        
            self._applets.append(self.batchInputApplet)
            self._applets.append(self.batchResultsApplet)
    
            # Connect batch workflow (NOT lane-based)
            self._initBatchWorkflow()

            if unused_args:
                # We parse the export setting args first.  All remaining args are considered input files by the input applet.
                self._batch_export_args, unused_args = self.batchResultsApplet.parse_known_cmdline_args( unused_args )
                self._batch_input_args, unused_args = self.batchInputApplet.parse_known_cmdline_args( unused_args )
    
        if unused_args:
            logger.warn("Unused command-line args: {}".format( unused_args ))

    def connectLane(self, laneIndex):
        # Get a handle to each operator
        opData = self.dataSelectionApplet.topLevelOperator.getLane(laneIndex)
        opTrainingFeatures = self.featureSelectionApplet.topLevelOperator.getLane(laneIndex)
        opClassify = self.pcApplet.topLevelOperator.getLane(laneIndex)
        opDataExport = self.dataExportApplet.topLevelOperator.getLane(laneIndex)
        
        # Input Image -> Feature Op
        #         and -> Classification Op (for display)
        opTrainingFeatures.InputImage.connect( opData.Image )
        opClassify.InputImages.connect( opData.Image )
        
        # Feature Images -> Classification Op (for training, prediction)
        opClassify.FeatureImages.connect( opTrainingFeatures.OutputImage )
        opClassify.CachedFeatureImages.connect( opTrainingFeatures.CachedOutputImage )
        
        # Training flags -> Classification Op (for GUI restrictions)
#.........这里部分代码省略.........
开发者ID:lfiaschi,项目名称:ilastik,代码行数:103,代码来源:pixelClassificationWorkflow.py


注:本文中的ilastik.applets.dataSelection.DataSelectionApplet.parse_known_cmdline_args方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。