本文整理汇总了Python中ilastik.applets.dataSelection.DataSelectionApplet类的典型用法代码示例。如果您正苦于以下问题:Python DataSelectionApplet类的具体用法?Python DataSelectionApplet怎么用?Python DataSelectionApplet使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了DataSelectionApplet类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
def __init__(self, shell, headless, workflow_cmdline_args, project_creation_args, *args, **kwargs):
# Create a graph to be shared by all operators
graph = Graph()
super(DataConversionWorkflow, self).__init__(shell, headless, workflow_cmdline_args, project_creation_args, graph=graph, *args, **kwargs)
self._applets = []
# Instantiate DataSelection applet
self.dataSelectionApplet = DataSelectionApplet(
self,
"Input Data",
"Input Data",
supportIlastik05Import=True,
forceAxisOrder=None)
# Configure global DataSelection settings
role_names = ["Input Data"]
opDataSelection = self.dataSelectionApplet.topLevelOperator
opDataSelection.DatasetRoles.setValue( role_names )
# Instantiate DataExport applet
self.dataExportApplet = DataExportApplet(self, "Data Export")
# Configure global DataExport settings
opDataExport = self.dataExportApplet.topLevelOperator
opDataExport.WorkingDirectory.connect( opDataSelection.WorkingDirectory )
opDataExport.SelectionNames.setValue( ["Input"] )
# No special data pre/post processing necessary in this workflow,
# but this is where we'd hook it up if we needed it.
#
#self.dataExportApplet.prepare_for_entire_export = self.prepare_for_entire_export
#self.dataExportApplet.prepare_lane_for_export = self.prepare_lane_for_export
#self.dataExportApplet.post_process_lane_export = self.post_process_lane_export
#self.dataExportApplet.post_process_entire_export = self.post_process_entire_export
# Instantiate BatchProcessing applet
self.batchProcessingApplet = BatchProcessingApplet(self,
"Batch Processing",
self.dataSelectionApplet,
self.dataExportApplet)
# Expose our applets in a list (for the shell to use)
self._applets.append( self.dataSelectionApplet )
self._applets.append( self.dataExportApplet )
self._applets.append(self.batchProcessingApplet)
# Parse command-line arguments
# Command-line args are applied in onProjectLoaded(), below.
if workflow_cmdline_args:
self._data_export_args, unused_args = self.dataExportApplet.parse_known_cmdline_args( workflow_cmdline_args )
self._batch_input_args, unused_args = self.dataSelectionApplet.parse_known_cmdline_args( unused_args, role_names )
else:
unused_args = None
self._batch_input_args = None
self._data_export_args = None
if unused_args:
logger.warning("Unused command-line args: {}".format( unused_args ))
示例2: onProjectLoaded
def onProjectLoaded(self, projectManager):
"""
Overridden from Workflow base class. Called by the Project Manager.
If the user provided command-line arguments, apply them to the workflow operators.
Currently, we support command-line configuration of:
- DataSelection
- Preprocessing, in which case preprocessing is immediately executed
"""
# If input data files were provided on the command line, configure the DataSelection applet now.
# (Otherwise, we assume the project already had a dataset selected.)
input_data_args, unused_args = DataSelectionApplet.parse_known_cmdline_args(self.workflow_cmdline_args, DATA_ROLES)
if input_data_args.raw_data:
self.dataSelectionApplet.configure_operator_with_parsed_args(input_data_args)
#
# Parse the remaining cmd-line arguments
#
filter_indexes = { 'bright-lines' : OpFilter.HESSIAN_BRIGHT,
'dark-lines' : OpFilter.HESSIAN_DARK,
'step-edges' : OpFilter.STEP_EDGES,
'original' : OpFilter.RAW,
'inverted' : OpFilter.RAW_INVERTED }
parser = argparse.ArgumentParser()
parser.add_argument('--run-preprocessing', action='store_true')
parser.add_argument('--preprocessing-sigma', type=float, required=False)
parser.add_argument('--preprocessing-filter', required=False, type=str.lower,
choices=filter_indexes.keys())
parsed_args, unused_args = parser.parse_known_args(unused_args)
if unused_args:
logger.warn("Did not use the following command-line arguments: {}".format(unused_args))
# Execute pre-processing.
if parsed_args.run_preprocessing:
if len(self.preprocessingApplet.topLevelOperator) != 1:
raise RuntimeError("Can't run preprocessing on a project with no images.")
opPreprocessing = self.preprocessingApplet.topLevelOperator.getLane(0) # Carving has only one 'lane'
# If user provided parameters, override the defaults.
if parsed_args.preprocessing_sigma is not None:
opPreprocessing.Sigma.setValue(parsed_args.preprocessing_sigma)
if parsed_args.preprocessing_filter:
filter_index = filter_indexes[parsed_args.preprocessing_filter]
opPreprocessing.Filter.setValue(filter_index)
logger.info("Running Preprocessing...")
opPreprocessing.PreprocessedData[:].wait()
logger.info("FINISHED Preprocessing...")
logger.info("Saving project...")
self._shell.projectManager.saveProject()
logger.info("Done saving.")
示例3: __init__
def __init__(self, shell, headless, workflow_cmdline_args, project_creation_workflow, *args, **kwargs):
# Create a graph to be shared by all operators
graph = Graph()
super(WsdtWorkflow, self).__init__( shell, headless, workflow_cmdline_args, project_creation_workflow, graph=graph, *args, **kwargs)
self._applets = []
# -- DataSelection applet
#
self.dataSelectionApplet = DataSelectionApplet(self, "Input Data", "Input Data")
# Dataset inputs
opDataSelection = self.dataSelectionApplet.topLevelOperator
opDataSelection.DatasetRoles.setValue( self.ROLE_NAMES )
# -- Wsdt applet
#
self.wsdtApplet = WsdtApplet(self, "Watershed", "Wsdt Watershed")
# -- DataExport applet
#
self.dataExportApplet = DataExportApplet(self, "Data Export")
# Configure global DataExport settings
opDataExport = self.dataExportApplet.topLevelOperator
opDataExport.WorkingDirectory.connect( opDataSelection.WorkingDirectory )
opDataExport.SelectionNames.setValue( self.EXPORT_NAMES )
# -- BatchProcessing applet
#
self.batchProcessingApplet = BatchProcessingApplet(self,
"Batch Processing",
self.dataSelectionApplet,
self.dataExportApplet)
# -- Expose applets to shell
self._applets.append(self.dataSelectionApplet)
self._applets.append(self.wsdtApplet)
self._applets.append(self.dataExportApplet)
self._applets.append(self.batchProcessingApplet)
# -- Parse command-line arguments
# (Command-line args are applied in onProjectLoaded(), below.)
if workflow_cmdline_args:
self._data_export_args, unused_args = self.dataExportApplet.parse_known_cmdline_args( workflow_cmdline_args )
self._batch_input_args, unused_args = self.dataSelectionApplet.parse_known_cmdline_args( unused_args, role_names )
else:
unused_args = None
self._batch_input_args = None
self._data_export_args = None
if unused_args:
logger.warning("Unused command-line args: {}".format( unused_args ))
示例4: _run_export_with_empty_batch_lane
def _run_export_with_empty_batch_lane(self, role_input_paths, batch_lane_index, template_infos, progress_callback):
"""
Configure the fresh batch lane with the given input files, and export the results.
"""
assert role_input_paths[0], "At least one file must be provided for each dataset (the first role)."
opDataSelectionBatchLaneView = self.dataSelectionApplet.topLevelOperator.getLane( batch_lane_index )
# Apply new settings for each role
for role_index, path_for_role in enumerate(role_input_paths):
if not path_for_role:
continue
if template_infos[role_index]:
info = copy.copy(template_infos[role_index])
else:
info = DatasetInfo()
# Override the template settings with the current filepath.
default_info = DataSelectionApplet.create_default_headless_dataset_info(path_for_role)
info.filePath = default_info.filePath
info.location = default_info.location
info.nickname = default_info.nickname
# Apply to the data selection operator
opDataSelectionBatchLaneView.DatasetGroup[role_index].setValue(info)
# Make sure nothing went wrong
opDataExportBatchlaneView = self.dataExportApplet.topLevelOperator.getLane( batch_lane_index )
assert opDataExportBatchlaneView.ImageToExport.ready()
assert opDataExportBatchlaneView.ExportPath.ready()
# New lanes were added.
# Give the workflow a chance to restore anything that was unecessarily invalidated (e.g. classifiers)
self.workflow.handleNewLanesAdded()
# Call customization hook
self.dataExportApplet.prepare_lane_for_export(batch_lane_index)
# Finally, run the export
logger.info("Exporting to {}".format( opDataExportBatchlaneView.ExportPath.value ))
opDataExportBatchlaneView.progressSignal.subscribe(progress_callback)
opDataExportBatchlaneView.run_export()
# Call customization hook
self.dataExportApplet.post_process_lane_export(batch_lane_index)
示例5: __init__
def __init__(self, shell, headless, workflow_cmdline_args, project_creation_args, hintoverlayFile=None, pmapoverlayFile=None, *args, **kwargs):
if hintoverlayFile is not None:
assert isinstance(hintoverlayFile, str), "hintoverlayFile should be a string, not '%s'" % type(hintoverlayFile)
if pmapoverlayFile is not None:
assert isinstance(pmapoverlayFile, str), "pmapoverlayFile should be a string, not '%s'" % type(pmapoverlayFile)
graph = Graph()
super(CarvingWorkflow, self).__init__(shell, headless, workflow_cmdline_args, project_creation_args, graph=graph, *args, **kwargs)
self.workflow_cmdline_args = workflow_cmdline_args
data_instructions = "Select your input data using the 'Raw Data' tab shown on the right.\n\n"\
"Additionally, you may optionally add an 'Overlay' data volume if it helps you annotate. (It won't be used for any computation.)"
## Create applets
self.projectMetadataApplet = ProjectMetadataApplet()
self.dataSelectionApplet = DataSelectionApplet( self,
"Input Data",
"Input Data",
supportIlastik05Import=True,
batchDataGui=False,
instructionText=data_instructions,
max_lanes=1 )
opDataSelection = self.dataSelectionApplet.topLevelOperator
opDataSelection.DatasetRoles.setValue( DATA_ROLES )
self.preprocessingApplet = PreprocessingApplet(workflow=self,
title = "Preprocessing",
projectFileGroupName="preprocessing")
self.carvingApplet = CarvingApplet(workflow=self,
projectFileGroupName="carving",
hintOverlayFile=hintoverlayFile,
pmapOverlayFile=pmapoverlayFile)
#self.carvingApplet.topLevelOperator.MST.connect(self.preprocessingApplet.topLevelOperator.PreprocessedData)
# Expose to shell
self._applets = []
self._applets.append(self.projectMetadataApplet)
self._applets.append(self.dataSelectionApplet)
self._applets.append(self.preprocessingApplet)
self._applets.append(self.carvingApplet)
示例6: append_lane
def append_lane(workflow, input_filepath, axisorder=None):
# Sanity checks
assert isinstance(workflow, PixelClassificationWorkflow)
opPixelClassification = workflow.pcApplet.topLevelOperator
assert opPixelClassification.Classifier.ready()
# If the filepath is a globstring, convert the stack to h5
input_filepath = DataSelectionApplet.convertStacksToH5( [input_filepath], TMP_DIR )[0]
info = DatasetInfo()
info.location = DatasetInfo.Location.FileSystem
info.filePath = input_filepath
comp = PathComponents(input_filepath)
# Convert all (non-url) paths to absolute
# (otherwise they are relative to the project file, which probably isn't what the user meant)
if not isUrl(input_filepath):
comp.externalPath = os.path.abspath(comp.externalPath)
info.filePath = comp.totalPath()
info.nickname = comp.filenameBase
if axisorder:
info.axistags = vigra.defaultAxistags(axisorder)
logger.debug( "adding lane: {}".format( info ) )
opDataSelection = workflow.dataSelectionApplet.topLevelOperator
# Add a lane
num_lanes = len( opDataSelection.DatasetGroup )+1
logger.debug( "num_lanes: {}".format( num_lanes ) )
opDataSelection.DatasetGroup.resize( num_lanes )
# Configure it.
role_index = 0 # raw data
opDataSelection.DatasetGroup[-1][role_index].setValue( info )
# Sanity check
assert len(opPixelClassification.InputImages) == num_lanes
return opPixelClassification
示例7: append_lane
def append_lane(workflow, input_filepath, axisorder=None):
"""
Add a lane to the project file for the given input file.
If axisorder is given, override the default axisorder for
the file and force the project to use the given one.
Globstrings are supported, in which case the files are converted to HDF5 first.
"""
# If the filepath is a globstring, convert the stack to h5
input_filepath = DataSelectionApplet.convertStacksToH5( [input_filepath], tempfile.mkdtemp() )[0]
info = DatasetInfo()
info.location = DatasetInfo.Location.FileSystem
info.filePath = input_filepath
comp = PathComponents(input_filepath)
# Convert all (non-url) paths to absolute
# (otherwise they are relative to the project file, which probably isn't what the user meant)
if not isUrl(input_filepath):
comp.externalPath = os.path.abspath(comp.externalPath)
info.filePath = comp.totalPath()
info.nickname = comp.filenameBase
if axisorder:
info.axistags = vigra.defaultAxistags(axisorder)
logger.debug( "adding lane: {}".format( info ) )
opDataSelection = workflow.dataSelectionApplet.topLevelOperator
# Add a lane
num_lanes = len( opDataSelection.DatasetGroup )+1
logger.debug( "num_lanes: {}".format( num_lanes ) )
opDataSelection.DatasetGroup.resize( num_lanes )
# Configure it.
role_index = 0 # raw data
opDataSelection.DatasetGroup[-1][role_index].setValue( info )
示例8: __init__
def __init__(self, shell, headless, workflow_cmdline_args, project_creation_args, *args, **kwargs):
# Create a graph to be shared by all operators
graph = Graph()
super(DataConversionWorkflow, self).__init__(shell, headless, workflow_cmdline_args, project_creation_args, graph=graph, *args, **kwargs)
self._applets = []
# Create applets
self.dataSelectionApplet = DataSelectionApplet(self,
"Input Data",
"Input Data",
supportIlastik05Import=True,
batchDataGui=False,
force5d=False)
opDataSelection = self.dataSelectionApplet.topLevelOperator
role_names = ["Input Data"]
opDataSelection.DatasetRoles.setValue( role_names )
self.dataExportApplet = DataExportApplet(self, "Data Export")
opDataExport = self.dataExportApplet.topLevelOperator
opDataExport.WorkingDirectory.connect( opDataSelection.WorkingDirectory )
opDataExport.SelectionNames.setValue( ["Input"] )
self._applets.append( self.dataSelectionApplet )
self._applets.append( self.dataExportApplet )
# Parse command-line arguments
# Command-line args are applied in onProjectLoaded(), below.
self._workflow_cmdline_args = workflow_cmdline_args
self._data_input_args = None
self._data_export_args = None
if workflow_cmdline_args:
self._data_export_args, unused_args = self.dataExportApplet.parse_known_cmdline_args( unused_args )
self._data_input_args, unused_args = self.dataSelectionApplet.parse_known_cmdline_args( workflow_cmdline_args, role_names )
if unused_args:
logger.warn("Unused command-line args: {}".format( unused_args ))
示例9: parse_known_cmdline_args
def parse_known_cmdline_args(self, cmdline_args):
# We use the same parser as the DataSelectionApplet
role_names = self.dataSelectionApplet.topLevelOperator.DatasetRoles.value
parsed_args, unused_args = DataSelectionApplet.parse_known_cmdline_args(cmdline_args, role_names)
return parsed_args, unused_args
示例10: PixelClassificationWorkflow
class PixelClassificationWorkflow(Workflow):
workflowName = "Pixel Classification"
workflowDescription = "This is obviously self-explanoratory."
defaultAppletIndex = 1 # show DataSelection by default
@property
def applets(self):
return self._applets
@property
def imageNameListSlot(self):
return self.dataSelectionApplet.topLevelOperator.ImageName
def __init__(self, shell, headless, workflow_cmdline_args, appendBatchOperators=True, *args, **kwargs):
# Create a graph to be shared by all operators
graph = Graph()
super( PixelClassificationWorkflow, self ).__init__( shell, headless, graph=graph, *args, **kwargs )
self._applets = []
self._workflow_cmdline_args = workflow_cmdline_args
data_instructions = "Select your input data using the 'Raw Data' tab shown on the right"
# Parse workflow-specific command-line args
parser = argparse.ArgumentParser()
parser.add_argument('--filter', help="pixel feature filter implementation.", choices=['Original', 'Refactored', 'Interpolated'], default='Original')
parsed_args, unused_args = parser.parse_known_args(workflow_cmdline_args)
self.filter_implementation = parsed_args.filter
# Applets for training (interactive) workflow
self.projectMetadataApplet = ProjectMetadataApplet()
self.dataSelectionApplet = DataSelectionApplet( self,
"Input Data",
"Input Data",
supportIlastik05Import=True,
batchDataGui=False,
instructionText=data_instructions )
opDataSelection = self.dataSelectionApplet.topLevelOperator
opDataSelection.DatasetRoles.setValue( ['Raw Data'] )
self.featureSelectionApplet = FeatureSelectionApplet(self, "Feature Selection", "FeatureSelections", self.filter_implementation)
self.pcApplet = PixelClassificationApplet(self, "PixelClassification")
opClassify = self.pcApplet.topLevelOperator
self.dataExportApplet = PixelClassificationDataExportApplet(self, "Prediction Export")
opDataExport = self.dataExportApplet.topLevelOperator
opDataExport.PmapColors.connect( opClassify.PmapColors )
opDataExport.LabelNames.connect( opClassify.LabelNames )
opDataExport.WorkingDirectory.connect( opDataSelection.WorkingDirectory )
# Expose for shell
self._applets.append(self.projectMetadataApplet)
self._applets.append(self.dataSelectionApplet)
self._applets.append(self.featureSelectionApplet)
self._applets.append(self.pcApplet)
self._applets.append(self.dataExportApplet)
self._batch_input_args = None
self._batch_export_args = None
self.batchInputApplet = None
self.batchResultsApplet = None
if appendBatchOperators:
# Create applets for batch workflow
self.batchInputApplet = DataSelectionApplet(self, "Batch Prediction Input Selections", "Batch Inputs", supportIlastik05Import=False, batchDataGui=True)
self.batchResultsApplet = PixelClassificationDataExportApplet(self, "Batch Prediction Output Locations", isBatch=True)
# Expose in shell
self._applets.append(self.batchInputApplet)
self._applets.append(self.batchResultsApplet)
# Connect batch workflow (NOT lane-based)
self._initBatchWorkflow()
if unused_args:
# We parse the export setting args first. All remaining args are considered input files by the input applet.
self._batch_export_args, unused_args = self.batchResultsApplet.parse_known_cmdline_args( unused_args )
self._batch_input_args, unused_args = self.batchInputApplet.parse_known_cmdline_args( unused_args )
if unused_args:
logger.warn("Unused command-line args: {}".format( unused_args ))
def connectLane(self, laneIndex):
# Get a handle to each operator
opData = self.dataSelectionApplet.topLevelOperator.getLane(laneIndex)
opTrainingFeatures = self.featureSelectionApplet.topLevelOperator.getLane(laneIndex)
opClassify = self.pcApplet.topLevelOperator.getLane(laneIndex)
opDataExport = self.dataExportApplet.topLevelOperator.getLane(laneIndex)
# Input Image -> Feature Op
# and -> Classification Op (for display)
opTrainingFeatures.InputImage.connect( opData.Image )
opClassify.InputImages.connect( opData.Image )
# Feature Images -> Classification Op (for training, prediction)
opClassify.FeatureImages.connect( opTrainingFeatures.OutputImage )
opClassify.CachedFeatureImages.connect( opTrainingFeatures.CachedOutputImage )
# Training flags -> Classification Op (for GUI restrictions)
#.........这里部分代码省略.........
示例11: __init__
def __init__(self, shell, headless, workflow_cmdline_args, project_creation_args, appendBatchOperators=True, *args, **kwargs):
# Create a graph to be shared by all operators
graph = Graph()
super( PixelClassificationWorkflow, self ).__init__( shell, headless, workflow_cmdline_args, project_creation_args, graph=graph, *args, **kwargs )
self._applets = []
self._workflow_cmdline_args = workflow_cmdline_args
# Parse workflow-specific command-line args
parser = argparse.ArgumentParser()
parser.add_argument('--filter', help="pixel feature filter implementation.", choices=['Original', 'Refactored', 'Interpolated'], default='Original')
parser.add_argument('--print-labels-by-slice', help="Print the number of labels for each Z-slice of each image.", action="store_true")
parser.add_argument('--label-search-value', help="If provided, only this value is considered when using --print-labels-by-slice", default=0, type=int)
parser.add_argument('--generate-random-labels', help="Add random labels to the project file.", action="store_true")
parser.add_argument('--random-label-value', help="The label value to use injecting random labels", default=1, type=int)
parser.add_argument('--random-label-count', help="The number of random labels to inject via --generate-random-labels", default=2000, type=int)
parser.add_argument('--retrain', help="Re-train the classifier based on labels stored in project file, and re-save.", action="store_true")
# Parse the creation args: These were saved to the project file when this project was first created.
parsed_creation_args, unused_args = parser.parse_known_args(project_creation_args)
self.filter_implementation = parsed_creation_args.filter
# Parse the cmdline args for the current session.
parsed_args, unused_args = parser.parse_known_args(workflow_cmdline_args)
self.print_labels_by_slice = parsed_args.print_labels_by_slice
self.label_search_value = parsed_args.label_search_value
self.generate_random_labels = parsed_args.generate_random_labels
self.random_label_value = parsed_args.random_label_value
self.random_label_count = parsed_args.random_label_count
self.retrain = parsed_args.retrain
if parsed_args.filter and parsed_args.filter != parsed_creation_args.filter:
logger.error("Ignoring new --filter setting. Filter implementation cannot be changed after initial project creation.")
data_instructions = "Select your input data using the 'Raw Data' tab shown on the right.\n\n"\
"Power users: Optionally use the 'Prediction Mask' tab to supply a binary image that tells ilastik where it should avoid computations you don't need."
# Applets for training (interactive) workflow
self.projectMetadataApplet = ProjectMetadataApplet()
self.dataSelectionApplet = DataSelectionApplet( self,
"Input Data",
"Input Data",
supportIlastik05Import=True,
batchDataGui=False,
instructionText=data_instructions )
opDataSelection = self.dataSelectionApplet.topLevelOperator
# see role constants, above
opDataSelection.DatasetRoles.setValue( ['Raw Data', 'Prediction Mask'] )
self.featureSelectionApplet = FeatureSelectionApplet(self, "Feature Selection", "FeatureSelections", self.filter_implementation)
self.pcApplet = PixelClassificationApplet( self, "PixelClassification" )
opClassify = self.pcApplet.topLevelOperator
self.dataExportApplet = PixelClassificationDataExportApplet(self, "Prediction Export")
opDataExport = self.dataExportApplet.topLevelOperator
opDataExport.PmapColors.connect( opClassify.PmapColors )
opDataExport.LabelNames.connect( opClassify.LabelNames )
opDataExport.WorkingDirectory.connect( opDataSelection.WorkingDirectory )
opDataExport.SelectionNames.setValue( self.EXPORT_NAMES )
# Expose for shell
self._applets.append(self.projectMetadataApplet)
self._applets.append(self.dataSelectionApplet)
self._applets.append(self.featureSelectionApplet)
self._applets.append(self.pcApplet)
self._applets.append(self.dataExportApplet)
self._batch_input_args = None
self._batch_export_args = None
self.batchInputApplet = None
self.batchResultsApplet = None
if appendBatchOperators:
# Create applets for batch workflow
self.batchInputApplet = DataSelectionApplet(self, "Batch Prediction Input Selections", "Batch Inputs", supportIlastik05Import=False, batchDataGui=True)
self.batchResultsApplet = PixelClassificationDataExportApplet(self, "Batch Prediction Output Locations", isBatch=True)
# Expose in shell
self._applets.append(self.batchInputApplet)
self._applets.append(self.batchResultsApplet)
# Connect batch workflow (NOT lane-based)
self._initBatchWorkflow()
if unused_args:
# We parse the export setting args first. All remaining args are considered input files by the input applet.
self._batch_export_args, unused_args = self.batchResultsApplet.parse_known_cmdline_args( unused_args )
self._batch_input_args, unused_args = self.batchInputApplet.parse_known_cmdline_args( unused_args )
if unused_args:
logger.warn("Unused command-line args: {}".format( unused_args ))
示例12: PixelClassificationWorkflow
class PixelClassificationWorkflow(Workflow):
workflowName = "Pixel Classification"
workflowDescription = "This is obviously self-explanatory."
defaultAppletIndex = 1 # show DataSelection by default
DATA_ROLE_RAW = 0
DATA_ROLE_PREDICTION_MASK = 1
EXPORT_NAMES = ['Probabilities', 'Simple Segmentation', 'Uncertainty', 'Features']
@property
def applets(self):
return self._applets
@property
def imageNameListSlot(self):
return self.dataSelectionApplet.topLevelOperator.ImageName
def __init__(self, shell, headless, workflow_cmdline_args, project_creation_args, appendBatchOperators=True, *args, **kwargs):
# Create a graph to be shared by all operators
graph = Graph()
super( PixelClassificationWorkflow, self ).__init__( shell, headless, workflow_cmdline_args, project_creation_args, graph=graph, *args, **kwargs )
self._applets = []
self._workflow_cmdline_args = workflow_cmdline_args
# Parse workflow-specific command-line args
parser = argparse.ArgumentParser()
parser.add_argument('--filter', help="pixel feature filter implementation.", choices=['Original', 'Refactored', 'Interpolated'], default='Original')
parser.add_argument('--print-labels-by-slice', help="Print the number of labels for each Z-slice of each image.", action="store_true")
parser.add_argument('--label-search-value', help="If provided, only this value is considered when using --print-labels-by-slice", default=0, type=int)
parser.add_argument('--generate-random-labels', help="Add random labels to the project file.", action="store_true")
parser.add_argument('--random-label-value', help="The label value to use injecting random labels", default=1, type=int)
parser.add_argument('--random-label-count', help="The number of random labels to inject via --generate-random-labels", default=2000, type=int)
parser.add_argument('--retrain', help="Re-train the classifier based on labels stored in project file, and re-save.", action="store_true")
# Parse the creation args: These were saved to the project file when this project was first created.
parsed_creation_args, unused_args = parser.parse_known_args(project_creation_args)
self.filter_implementation = parsed_creation_args.filter
# Parse the cmdline args for the current session.
parsed_args, unused_args = parser.parse_known_args(workflow_cmdline_args)
self.print_labels_by_slice = parsed_args.print_labels_by_slice
self.label_search_value = parsed_args.label_search_value
self.generate_random_labels = parsed_args.generate_random_labels
self.random_label_value = parsed_args.random_label_value
self.random_label_count = parsed_args.random_label_count
self.retrain = parsed_args.retrain
if parsed_args.filter and parsed_args.filter != parsed_creation_args.filter:
logger.error("Ignoring new --filter setting. Filter implementation cannot be changed after initial project creation.")
data_instructions = "Select your input data using the 'Raw Data' tab shown on the right.\n\n"\
"Power users: Optionally use the 'Prediction Mask' tab to supply a binary image that tells ilastik where it should avoid computations you don't need."
# Applets for training (interactive) workflow
self.projectMetadataApplet = ProjectMetadataApplet()
self.dataSelectionApplet = DataSelectionApplet( self,
"Input Data",
"Input Data",
supportIlastik05Import=True,
batchDataGui=False,
instructionText=data_instructions )
opDataSelection = self.dataSelectionApplet.topLevelOperator
# see role constants, above
opDataSelection.DatasetRoles.setValue( ['Raw Data', 'Prediction Mask'] )
self.featureSelectionApplet = FeatureSelectionApplet(self, "Feature Selection", "FeatureSelections", self.filter_implementation)
self.pcApplet = PixelClassificationApplet( self, "PixelClassification" )
opClassify = self.pcApplet.topLevelOperator
self.dataExportApplet = PixelClassificationDataExportApplet(self, "Prediction Export")
opDataExport = self.dataExportApplet.topLevelOperator
opDataExport.PmapColors.connect( opClassify.PmapColors )
opDataExport.LabelNames.connect( opClassify.LabelNames )
opDataExport.WorkingDirectory.connect( opDataSelection.WorkingDirectory )
opDataExport.SelectionNames.setValue( self.EXPORT_NAMES )
# Expose for shell
self._applets.append(self.projectMetadataApplet)
self._applets.append(self.dataSelectionApplet)
self._applets.append(self.featureSelectionApplet)
self._applets.append(self.pcApplet)
self._applets.append(self.dataExportApplet)
self._batch_input_args = None
self._batch_export_args = None
self.batchInputApplet = None
self.batchResultsApplet = None
if appendBatchOperators:
# Create applets for batch workflow
self.batchInputApplet = DataSelectionApplet(self, "Batch Prediction Input Selections", "Batch Inputs", supportIlastik05Import=False, batchDataGui=True)
self.batchResultsApplet = PixelClassificationDataExportApplet(self, "Batch Prediction Output Locations", isBatch=True)
# Expose in shell
self._applets.append(self.batchInputApplet)
self._applets.append(self.batchResultsApplet)
#.........这里部分代码省略.........
示例13: DataConversionWorkflow
class DataConversionWorkflow(Workflow):
"""
Simple workflow for converting data between formats. Has only two applets: Data Selection and Data Export.
Also supports a command-line interface for headless mode.
For example:
.. code-block:: bash
python ilastik.py --headless --new_project=NewTemporaryProject.ilp --workflow=DataConversionWorkflow --output_format="png sequence" ~/input1.h5 ~/input2.h5
Or if you have an existing project with input files already selected and configured:
.. code-block:: bash
python ilastik.py --headless --project=MyProject.ilp --output_format=jpeg
.. note:: Beware of issues related to absolute vs. relative paths. Relative links are stored relative to the project file.
To avoid this issue entirely, either
(1) use only absolute filepaths
or (2) cd into your project file's directory before launching ilastik.
"""
def __init__(self, shell, headless, workflow_cmdline_args, project_creation_args, *args, **kwargs):
# Create a graph to be shared by all operators
graph = Graph()
super(DataConversionWorkflow, self).__init__(shell, headless, workflow_cmdline_args, project_creation_args, graph=graph, *args, **kwargs)
self._applets = []
# Create applets
self.dataSelectionApplet = DataSelectionApplet(self,
"Input Data",
"Input Data",
supportIlastik05Import=True,
batchDataGui=False,
force5d=False)
opDataSelection = self.dataSelectionApplet.topLevelOperator
role_names = ["Input Data"]
opDataSelection.DatasetRoles.setValue( role_names )
self.dataExportApplet = DataExportApplet(self, "Data Export")
opDataExport = self.dataExportApplet.topLevelOperator
opDataExport.WorkingDirectory.connect( opDataSelection.WorkingDirectory )
opDataExport.SelectionNames.setValue( ["Input"] )
self._applets.append( self.dataSelectionApplet )
self._applets.append( self.dataExportApplet )
# Parse command-line arguments
# Command-line args are applied in onProjectLoaded(), below.
self._workflow_cmdline_args = workflow_cmdline_args
self._data_input_args = None
self._data_export_args = None
if workflow_cmdline_args:
self._data_export_args, unused_args = self.dataExportApplet.parse_known_cmdline_args( unused_args )
self._data_input_args, unused_args = self.dataSelectionApplet.parse_known_cmdline_args( workflow_cmdline_args, role_names )
if unused_args:
logger.warn("Unused command-line args: {}".format( unused_args ))
def onProjectLoaded(self, projectManager):
"""
Overridden from Workflow base class. Called by the Project Manager.
If the user provided command-line arguments, use them to configure
the workflow inputs and output settings.
"""
# Configure the batch data selection operator.
if self._data_input_args and self._data_input_args.input_files:
self.dataSelectionApplet.configure_operator_with_parsed_args( self._data_input_args )
# Configure the data export operator.
if self._data_export_args:
self.dataExportApplet.configure_operator_with_parsed_args( self._data_export_args )
if self._headless and self._data_input_args and self._data_export_args:
# Now run the export and report progress....
opDataExport = self.dataExportApplet.topLevelOperator
for i, opExportDataLaneView in enumerate(opDataExport):
logger.info( "Exporting file #{} to {}".format(i, opExportDataLaneView.ExportPath.value) )
sys.stdout.write( "Result #{}/{} Progress: ".format( i, len( opDataExport ) ) )
def print_progress( progress ):
sys.stdout.write( "{} ".format( progress ) )
# If the operator provides a progress signal, use it.
slotProgressSignal = opExportDataLaneView.progressSignal
slotProgressSignal.subscribe( print_progress )
opExportDataLaneView.run_export()
# Finished.
sys.stdout.write("\n")
def connectLane(self, laneIndex):
opDataSelectionView = self.dataSelectionApplet.topLevelOperator.getLane(laneIndex)
opDataExportView = self.dataExportApplet.topLevelOperator.getLane(laneIndex)
#.........这里部分代码省略.........
示例14: WsdtWorkflow
class WsdtWorkflow(Workflow):
workflowName = "Watershed Over Distance Transform"
workflowDescription = "A bare-bones workflow for using the WSDT applet"
defaultAppletIndex = 0 # show DataSelection by default
DATA_ROLE_RAW = 0
DATA_ROLE_PROBABILITIES = 1
ROLE_NAMES = ['Raw Data', 'Probabilities']
EXPORT_NAMES = ['Watershed']
@property
def applets(self):
return self._applets
@property
def imageNameListSlot(self):
return self.dataSelectionApplet.topLevelOperator.ImageName
def __init__(self, shell, headless, workflow_cmdline_args, project_creation_workflow, *args, **kwargs):
# Create a graph to be shared by all operators
graph = Graph()
super(WsdtWorkflow, self).__init__( shell, headless, workflow_cmdline_args, project_creation_workflow, graph=graph, *args, **kwargs)
self._applets = []
# -- DataSelection applet
#
self.dataSelectionApplet = DataSelectionApplet(self, "Input Data", "Input Data")
# Dataset inputs
opDataSelection = self.dataSelectionApplet.topLevelOperator
opDataSelection.DatasetRoles.setValue( self.ROLE_NAMES )
# -- Wsdt applet
#
self.wsdtApplet = WsdtApplet(self, "Watershed", "Wsdt Watershed")
# -- DataExport applet
#
self.dataExportApplet = DataExportApplet(self, "Data Export")
# Configure global DataExport settings
opDataExport = self.dataExportApplet.topLevelOperator
opDataExport.WorkingDirectory.connect( opDataSelection.WorkingDirectory )
opDataExport.SelectionNames.setValue( self.EXPORT_NAMES )
# -- BatchProcessing applet
#
self.batchProcessingApplet = BatchProcessingApplet(self,
"Batch Processing",
self.dataSelectionApplet,
self.dataExportApplet)
# -- Expose applets to shell
self._applets.append(self.dataSelectionApplet)
self._applets.append(self.wsdtApplet)
self._applets.append(self.dataExportApplet)
self._applets.append(self.batchProcessingApplet)
# -- Parse command-line arguments
# (Command-line args are applied in onProjectLoaded(), below.)
if workflow_cmdline_args:
self._data_export_args, unused_args = self.dataExportApplet.parse_known_cmdline_args( workflow_cmdline_args )
self._batch_input_args, unused_args = self.dataSelectionApplet.parse_known_cmdline_args( unused_args, role_names )
else:
unused_args = None
self._batch_input_args = None
self._data_export_args = None
if unused_args:
logger.warning("Unused command-line args: {}".format( unused_args ))
def connectLane(self, laneIndex):
"""
Override from base class.
"""
opDataSelection = self.dataSelectionApplet.topLevelOperator.getLane(laneIndex)
opWsdt = self.wsdtApplet.topLevelOperator.getLane(laneIndex)
opDataExport = self.dataExportApplet.topLevelOperator.getLane(laneIndex)
# watershed inputs
opWsdt.RawData.connect( opDataSelection.ImageGroup[self.DATA_ROLE_RAW] )
opWsdt.Input.connect( opDataSelection.ImageGroup[self.DATA_ROLE_PROBABILITIES] )
# DataExport inputs
opDataExport.RawData.connect( opDataSelection.ImageGroup[self.DATA_ROLE_RAW] )
opDataExport.RawDatasetInfo.connect( opDataSelection.DatasetGroup[self.DATA_ROLE_RAW] )
opDataExport.Inputs.resize( len(self.EXPORT_NAMES) )
opDataExport.Inputs[0].connect( opWsdt.Superpixels )
for slot in opDataExport.Inputs:
assert slot.partner is not None
def onProjectLoaded(self, projectManager):
"""
Overridden from Workflow base class. Called by the Project Manager.
If the user provided command-line arguments, use them to configure
the workflow inputs and output settings.
"""
# Configure the data export operator.
#.........这里部分代码省略.........
示例15: __init__
def __init__(self, shell, headless, workflow_cmdline_args, appendBatchOperators=True, *args, **kwargs):
# Create a graph to be shared by all operators
graph = Graph()
super( PixelClassificationWorkflow, self ).__init__( shell, headless, graph=graph, *args, **kwargs )
self._applets = []
self._workflow_cmdline_args = workflow_cmdline_args
data_instructions = "Select your input data using the 'Raw Data' tab shown on the right"
# Parse workflow-specific command-line args
parser = argparse.ArgumentParser()
parser.add_argument('--filter', help="pixel feature filter implementation.", choices=['Original', 'Refactored', 'Interpolated'], default='Original')
parsed_args, unused_args = parser.parse_known_args(workflow_cmdline_args)
self.filter_implementation = parsed_args.filter
# Applets for training (interactive) workflow
self.projectMetadataApplet = ProjectMetadataApplet()
self.dataSelectionApplet = DataSelectionApplet( self,
"Input Data",
"Input Data",
supportIlastik05Import=True,
batchDataGui=False,
instructionText=data_instructions )
opDataSelection = self.dataSelectionApplet.topLevelOperator
opDataSelection.DatasetRoles.setValue( ['Raw Data'] )
self.featureSelectionApplet = FeatureSelectionApplet(self, "Feature Selection", "FeatureSelections", self.filter_implementation)
self.pcApplet = PixelClassificationApplet(self, "PixelClassification")
opClassify = self.pcApplet.topLevelOperator
self.dataExportApplet = PixelClassificationDataExportApplet(self, "Prediction Export")
opDataExport = self.dataExportApplet.topLevelOperator
opDataExport.PmapColors.connect( opClassify.PmapColors )
opDataExport.LabelNames.connect( opClassify.LabelNames )
opDataExport.WorkingDirectory.connect( opDataSelection.WorkingDirectory )
# Expose for shell
self._applets.append(self.projectMetadataApplet)
self._applets.append(self.dataSelectionApplet)
self._applets.append(self.featureSelectionApplet)
self._applets.append(self.pcApplet)
self._applets.append(self.dataExportApplet)
self._batch_input_args = None
self._batch_export_args = None
self.batchInputApplet = None
self.batchResultsApplet = None
if appendBatchOperators:
# Create applets for batch workflow
self.batchInputApplet = DataSelectionApplet(self, "Batch Prediction Input Selections", "Batch Inputs", supportIlastik05Import=False, batchDataGui=True)
self.batchResultsApplet = PixelClassificationDataExportApplet(self, "Batch Prediction Output Locations", isBatch=True)
# Expose in shell
self._applets.append(self.batchInputApplet)
self._applets.append(self.batchResultsApplet)
# Connect batch workflow (NOT lane-based)
self._initBatchWorkflow()
if unused_args:
# We parse the export setting args first. All remaining args are considered input files by the input applet.
self._batch_export_args, unused_args = self.batchResultsApplet.parse_known_cmdline_args( unused_args )
self._batch_input_args, unused_args = self.batchInputApplet.parse_known_cmdline_args( unused_args )
if unused_args:
logger.warn("Unused command-line args: {}".format( unused_args ))