当前位置: 首页>>代码示例>>Python>>正文


Python Graph.es方法代码示例

本文整理汇总了Python中igraph.Graph.es方法的典型用法代码示例。如果您正苦于以下问题:Python Graph.es方法的具体用法?Python Graph.es怎么用?Python Graph.es使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在igraph.Graph的用法示例。


在下文中一共展示了Graph.es方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: contributor_network

# 需要导入模块: from igraph import Graph [as 别名]
# 或者: from igraph.Graph import es [as 别名]
    def contributor_network(cls):
        'Network graph of authors, editors, translators, and journals'

        # NOTE: this is a bit slow to be generating on the fly.
        # For now, cache the network after it's generated, but that
        # should probably be refined
        graph = cache.get(cls.contributor_network_cache_key)
        if graph:
            logger.debug('Using cached journal contributor network graph')
            return graph

        graph = Graph()
        graph.to_directed()   # we want a directed graph
        full_start = time.time()
        # gather edges in an ordered dict to avoid generating duplicate
        # edges, and so edge weights can be added efficiently
        # - key is a tuple of source & target nodes, edge label, i.e.
        #   ((source, target), label)
        # - value is the count or weight of that edge
        edges = OrderedDict()

        # helper method to add edges:
        # set count to 1 if not already present; increase count if present
        def add_edge(edge):
            if edge not in edges:
                edges[edge] = 1
            else:
                edges[edge] += 1

        # start = time.time()
        # prefetch journal contributors all at once, for efficiency
        journals = Journal.objects.all().prefetch_related(
            'schools', 'issue_set__editors', 'issue_set__item_set__creators',
            'issue_set__item_set__translators')
        # NOTE: this query is currently the slowest step in generating the
        # graph, nearly ~4s in dev.  It can only be timed here if it is
        # forced to evaluate via list or similar, but it is slightly more
        # efficient not to evaluate it that way
        # logger.debug('Retrieved journal contributor data from db in %.2f sec',
                    # time.time() - start)

        for j in journals:
            start = time.time()
            # starting count, to easily calculate number of nodes & edges added
            vtx_count = len(graph.vs())
            edge_count = len(edges)
            graph.add_vertex(j.network_id, label=unicode(j),
                             type=j.network_type,
                             schools=[s.name for s in j.schools.all()])

            # journal editors are at the issue level
            for issue in j.issue_set.all():
                editors = issue.editors.all()
                for i, editor in enumerate(editors):
                    # only add if not already present
                    if editor.network_id not in graph.vs['name']:
                        graph.add_vertex(editor.network_id,
                                         type=editor.network_type,
                                         label=editor.firstname_lastname)
                    add_edge(((editor.network_id, j.network_id), 'editor'))

                    # add a co-editor rel to any other editors on this issue
                    for co_editor in editors[i+1:]:
                        add_edge(((editor.network_id, co_editor.network_id),
                                 'co-editor'))

                # authors and translators are at the item level
                for item in issue.item_set.all():
                    authors = item.creators.all()
                    for i, author in enumerate(authors):
                        # only add person if not already present in the graph
                        if author.network_id not in graph.vs['name']:
                            graph.add_vertex(author.network_id,
                                             label=author.firstname_lastname,
                                             type=author.network_type)
                        # author is a journal contributor
                        add_edge(((author.network_id, j.network_id),
                                 'contributor'))

                        # each author is connected to the issue editors who
                        # edited their work
                        for editor in editors:
                            add_edge(((editor.network_id, author.network_id),
                                     'edited'))

                        # add a co-author to any other authors on this item
                        for co_author in authors[i+1:]:
                            add_edge(((author.network_id, co_author.network_id),
                                     'co-author'))

                    for translator in item.translators.all():
                        # only add person if not already present in the graph
                        if translator.network_id not in graph.vs['name']:
                            graph.add_vertex(translator.network_id,
                                             label=translator.firstname_lastname,
                                             type=translator.network_type)

                        # translators are connected to the journal they contributed to
                        add_edge(((translator.network_id, j.network_id),
                                 'translator'))
#.........这里部分代码省略.........
开发者ID:emory-libraries-ecds,项目名称:zurnatikl,代码行数:103,代码来源:models.py


注:本文中的igraph.Graph.es方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。