当前位置: 首页>>代码示例>>Python>>正文


Python VectorParser.add_shape方法代码示例

本文整理汇总了Python中hypergrad.nn_utils.VectorParser.add_shape方法的典型用法代码示例。如果您正苦于以下问题:Python VectorParser.add_shape方法的具体用法?Python VectorParser.add_shape怎么用?Python VectorParser.add_shape使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在hypergrad.nn_utils.VectorParser的用法示例。


在下文中一共展示了VectorParser.add_shape方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_sgd_parser

# 需要导入模块: from hypergrad.nn_utils import VectorParser [as 别名]
# 或者: from hypergrad.nn_utils.VectorParser import add_shape [as 别名]
def test_sgd_parser():
    N_weights = 6
    W0 = 0.1 * npr.randn(N_weights)
    N_data = 12
    batch_size = 4
    num_epochs = 4
    batch_idxs = BatchList(N_data, batch_size)

    parser = VectorParser()
    parser.add_shape('first',  [2,])
    parser.add_shape('second', [1,])
    parser.add_shape('third',  [3,])
    N_weight_types = 3

    alphas = 0.1 * npr.rand(len(batch_idxs) * num_epochs, N_weight_types)
    betas = 0.5 + 0.2 * npr.rand(len(batch_idxs) * num_epochs, N_weight_types)
    meta = 0.1 * npr.randn(N_weights*2)

    A = npr.randn(N_data, N_weights)
    def loss_fun(W, meta, i=None):
        idxs = batch_idxs.all_idxs if i is None else batch_idxs[i % len(batch_idxs)]
        sub_A = A[idxs, :]
        return np.dot(np.dot(W + meta[:N_weights] + meta[N_weights:], np.dot(sub_A.T, sub_A)), W)

    def full_loss(params):
        (W0, alphas, betas, meta) = params
        result = sgd_parsed(grad(loss_fun), kylist(W0, alphas, betas, meta), parser)
        return loss_fun(result, meta)

    d_num = nd(full_loss, (W0, alphas, betas, meta))
    d_an_fun = grad(full_loss)
    d_an = d_an_fun([W0, alphas, betas, meta])
    for i, (an, num) in enumerate(zip(d_an, d_num[0])):
        assert np.allclose(an, num, rtol=1e-3, atol=1e-4), \
            "Type {0}, diffs are: {1}".format(i, an - num)
开发者ID:ChinJY,项目名称:hypergrad,代码行数:37,代码来源:test_grads.py

示例2: make_parabola

# 需要导入模块: from hypergrad.nn_utils import VectorParser [as 别名]
# 或者: from hypergrad.nn_utils.VectorParser import add_shape [as 别名]
def make_parabola(d):
    parser = VectorParser()
    parser.add_shape('weights', d)
    dimscale = np.exp(np.linspace(-3, 3, d))
    offset = npr.randn(d)

    def loss(w, X=0.0, T=0.0, L2_reg=0.0):
        return np.dot((w - offset) * dimscale, (w - offset))

    return parser, loss
开发者ID:yinyumeng,项目名称:HyperParameterTuning,代码行数:12,代码来源:experiment.py

示例3: make_toy_funs

# 需要导入模块: from hypergrad.nn_utils import VectorParser [as 别名]
# 或者: from hypergrad.nn_utils.VectorParser import add_shape [as 别名]
def make_toy_funs():
    parser = VectorParser()
    parser.add_shape('weights', 2)

    def rosenbrock(x):
        return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)

    def loss(W_vect, X=0.0, T=0.0, L2_reg=0.0):
        return 500 * logit(rosenbrock(W_vect) / 500)

    return parser, loss
开发者ID:ChinJY,项目名称:hypergrad,代码行数:13,代码来源:experiment.py

示例4: make_toy_funs

# 需要导入模块: from hypergrad.nn_utils import VectorParser [as 别名]
# 或者: from hypergrad.nn_utils.VectorParser import add_shape [as 别名]
def make_toy_funs():
    parser = VectorParser()
    parser.add_shape("weights", 2)

    def rosenbrock(w):
        x = w[1:]
        y = w[:-1]
        return sum(100.0 * (x - y ** 2.0) ** 2.0 + (1 - y) ** 2.0 + 200.0 * y)

    def loss(W_vect, X=0.0, T=0.0, L2_reg=0.0):
        return 800 * logit(rosenbrock(W_vect) / 500)

    return parser, loss
开发者ID:lizhangzhan,项目名称:hypergrad,代码行数:15,代码来源:experiment.py


注:本文中的hypergrad.nn_utils.VectorParser.add_shape方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。