本文整理汇总了Python中hypergrad.nn_utils.VectorParser类的典型用法代码示例。如果您正苦于以下问题:Python VectorParser类的具体用法?Python VectorParser怎么用?Python VectorParser使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了VectorParser类的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_sgd_parser
def test_sgd_parser():
N_weights = 6
W0 = 0.1 * npr.randn(N_weights)
N_data = 12
batch_size = 4
num_epochs = 4
batch_idxs = BatchList(N_data, batch_size)
parser = VectorParser()
parser.add_shape('first', [2,])
parser.add_shape('second', [1,])
parser.add_shape('third', [3,])
N_weight_types = 3
alphas = 0.1 * npr.rand(len(batch_idxs) * num_epochs, N_weight_types)
betas = 0.5 + 0.2 * npr.rand(len(batch_idxs) * num_epochs, N_weight_types)
meta = 0.1 * npr.randn(N_weights*2)
A = npr.randn(N_data, N_weights)
def loss_fun(W, meta, i=None):
idxs = batch_idxs.all_idxs if i is None else batch_idxs[i % len(batch_idxs)]
sub_A = A[idxs, :]
return np.dot(np.dot(W + meta[:N_weights] + meta[N_weights:], np.dot(sub_A.T, sub_A)), W)
def full_loss(params):
(W0, alphas, betas, meta) = params
result = sgd_parsed(grad(loss_fun), kylist(W0, alphas, betas, meta), parser)
return loss_fun(result, meta)
d_num = nd(full_loss, (W0, alphas, betas, meta))
d_an_fun = grad(full_loss)
d_an = d_an_fun([W0, alphas, betas, meta])
for i, (an, num) in enumerate(zip(d_an, d_num[0])):
assert np.allclose(an, num, rtol=1e-3, atol=1e-4), \
"Type {0}, diffs are: {1}".format(i, an - num)
示例2: make_parabola
def make_parabola(d):
parser = VectorParser()
parser.add_shape('weights', d)
dimscale = np.exp(np.linspace(-3, 3, d))
offset = npr.randn(d)
def loss(w, X=0.0, T=0.0, L2_reg=0.0):
return np.dot((w - offset) * dimscale, (w - offset))
return parser, loss
示例3: make_toy_funs
def make_toy_funs():
parser = VectorParser()
parser.add_shape('weights', 2)
def rosenbrock(x):
return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)
def loss(W_vect, X=0.0, T=0.0, L2_reg=0.0):
return 500 * logit(rosenbrock(W_vect) / 500)
return parser, loss
示例4: make_toy_funs
def make_toy_funs():
parser = VectorParser()
parser.add_shape("weights", 2)
def rosenbrock(w):
x = w[1:]
y = w[:-1]
return sum(100.0 * (x - y ** 2.0) ** 2.0 + (1 - y) ** 2.0 + 200.0 * y)
def loss(W_vect, X=0.0, T=0.0, L2_reg=0.0):
return 800 * logit(rosenbrock(W_vect) / 500)
return parser, loss
示例5: run
def run():
train_data, valid_data, tests_data = load_data_dicts(N_train, N_valid, N_tests)
parser, pred_fun, loss_fun, frac_err = make_nn_funs(layer_sizes)
N_weight_types = len(parser.names)
hyperparams = VectorParser()
hyperparams['log_param_scale'] = np.full(N_weight_types, init_log_param_scale)
hyperparams['log_alphas'] = np.full((N_iters, N_weight_types), init_log_alphas)
hyperparams['invlogit_betas'] = np.full((N_iters, N_weight_types), init_invlogit_betas)
fixed_hyperparams = VectorParser()
fixed_hyperparams['log_L2_reg'] = np.full(N_weight_types, init_log_L2_reg)
def primal_optimizer(hyperparam_vect, i_hyper):
def indexed_loss_fun(w, L2_vect, i_iter):
rs = RandomState((seed, i_hyper, i_iter)) # Deterministic seed needed for backwards pass.
idxs = rs.randint(N_train, size=batch_size)
return loss_fun(w, train_data['X'][idxs], train_data['T'][idxs], L2_vect)
learning_curve_dict = defaultdict(list)
def callback(x, v, g, i_iter):
if i_iter % thin == 0:
learning_curve_dict['learning_curve'].append(loss_fun(x, **train_data))
learning_curve_dict['grad_norm'].append(np.linalg.norm(g))
learning_curve_dict['weight_norm'].append(np.linalg.norm(x))
learning_curve_dict['velocity_norm'].append(np.linalg.norm(v))
cur_hyperparams = hyperparams.new_vect(hyperparam_vect)
rs = RandomState((seed, i_hyper))
W0 = fill_parser(parser, np.exp(cur_hyperparams['log_param_scale']))
W0 *= rs.randn(W0.size)
alphas = np.exp(cur_hyperparams['log_alphas'])
betas = logit(cur_hyperparams['invlogit_betas'])
L2_reg = fill_parser(parser, np.exp(fixed_hyperparams['log_L2_reg']))
W_opt = sgd_parsed(grad(indexed_loss_fun), kylist(W0, alphas, betas, L2_reg),
parser, callback=callback)
return W_opt, learning_curve_dict
def hyperloss(hyperparam_vect, i_hyper):
W_opt, _ = primal_optimizer(hyperparam_vect, i_hyper)
return loss_fun(W_opt, **train_data)
hyperloss_grad = grad(hyperloss)
initial_hypergrad = hyperloss_grad( hyperparams.vect, 0)
parsed_init_hypergrad = hyperparams.new_vect(initial_hypergrad.copy())
avg_hypergrad = initial_hypergrad.copy()
for i in xrange(1, N_meta_iter):
avg_hypergrad += hyperloss_grad( hyperparams.vect, i)
print i
parsed_avg_hypergrad = hyperparams.new_vect(avg_hypergrad)
parser.vect = None # No need to pickle zeros
return parser, parsed_init_hypergrad, parsed_avg_hypergrad
示例6: run
def run():
train_data, valid_data, tests_data = load_data_dicts(N_train, N_valid, N_tests)
parser, pred_fun, loss_fun, frac_err = make_nn_funs(layer_sizes)
N_weight_types = len(parser.names)
hyperparams = VectorParser()
hyperparams['log_param_scale'] = np.full(N_weight_types, init_log_param_scale)
hyperparams['log_alphas'] = np.full((N_iters, N_weight_types), init_log_alphas)
hyperparams['invlogit_betas'] = np.full((N_iters, N_weight_types), init_invlogit_betas)
fixed_hyperparams = VectorParser()
fixed_hyperparams['log_L2_reg'] = np.full(N_weight_types, init_log_L2_reg)
cur_primal_results = {}
def primal_optimizer(hyperparam_vect, i_hyper):
def indexed_loss_fun(w, L2_vect, i_iter):
rs = RandomState((seed, i_hyper, i_iter)) # Deterministic seed needed for backwards pass.
idxs = rs.randint(N_train, size=batch_size)
return loss_fun(w, train_data['X'][idxs], train_data['T'][idxs], L2_vect)
learning_curve_dict = defaultdict(list)
def callback(x, v, g, i_iter):
if i_iter % thin == 0:
learning_curve_dict['learning_curve'].append(loss_fun(x, **train_data))
learning_curve_dict['grad_norm'].append(np.linalg.norm(g))
learning_curve_dict['weight_norm'].append(np.linalg.norm(x))
learning_curve_dict['velocity_norm'].append(np.linalg.norm(v))
cur_hyperparams = hyperparams.new_vect(hyperparam_vect)
rs = RandomState((seed, i_hyper))
W0 = fill_parser(parser, np.exp(cur_hyperparams['log_param_scale']))
W0 *= rs.randn(W0.size)
alphas = np.exp(cur_hyperparams['log_alphas'])
betas = logit(cur_hyperparams['invlogit_betas'])
L2_reg = fill_parser(parser, np.exp(fixed_hyperparams['log_L2_reg']))
W_opt = sgd_parsed(grad(indexed_loss_fun), kylist(W0, alphas, betas, L2_reg),
parser, callback=callback)
cur_primal_results['weights'] = getval(W_opt).copy()
cur_primal_results['learning_curve'] = getval(learning_curve_dict)
return W_opt, learning_curve_dict
def hyperloss(hyperparam_vect, i_hyper):
W_opt, _ = primal_optimizer(hyperparam_vect, i_hyper)
return loss_fun(W_opt, **train_data)
hyperloss_grad = grad(hyperloss)
meta_results = defaultdict(list)
old_metagrad = [np.ones(hyperparams.vect.size)]
def meta_callback(hyperparam_vect, i_hyper, metagrad=None):
x, learning_curve_dict = cur_primal_results['weights'], cur_primal_results['learning_curve']
cur_hyperparams = hyperparams.new_vect(hyperparam_vect.copy())
for field in cur_hyperparams.names:
meta_results[field].append(cur_hyperparams[field])
meta_results['train_loss'].append(loss_fun(x, **train_data))
meta_results['valid_loss'].append(loss_fun(x, **valid_data))
meta_results['tests_loss'].append(loss_fun(x, **tests_data))
meta_results['test_err'].append(frac_err(x, **tests_data))
meta_results['learning_curves'].append(learning_curve_dict)
meta_results['example_weights'] = x
if metagrad is not None:
meta_results['meta_grad_magnitude'].append(np.linalg.norm(metagrad))
meta_results['meta_grad_angle'].append(np.dot(old_metagrad[0], metagrad) \
/ (np.linalg.norm(metagrad)*
np.linalg.norm(old_metagrad[0])))
old_metagrad[0] = metagrad
print "Meta Epoch {0} Train loss {1:2.4f} Valid Loss {2:2.4f}" \
" Test Loss {3:2.4f} Test Err {4:2.4f}".format(
i_hyper, meta_results['train_loss'][-1], meta_results['valid_loss'][-1],
meta_results['train_loss'][-1], meta_results['test_err'][-1])
initial_hypergrad = hyperloss_grad( hyperparams.vect, 0)
hypergrads = np.zeros((N_meta_iter, len(initial_hypergrad)))
for i in xrange(N_meta_iter):
hypergrads[i] = hyperloss_grad( hyperparams.vect, i)
print i
avg_hypergrad = np.mean(hypergrads, axis=0)
parsed_avg_hypergrad = hyperparams.new_vect(avg_hypergrad)
parser.vect = None # No need to pickle zeros
return parser, parsed_avg_hypergrad
示例7: run
def run():
train_data, valid_data, tests_data = load_data_dicts(N_train, N_valid, N_tests)
parser, pred_fun, loss_fun, frac_err = make_nn_funs(layer_sizes)
N_weight_types = len(parser.names)
hyperparams = VectorParser()
hyperparams['log_param_scale'] = np.full(N_weight_types, init_log_param_scale)
hyperparams['log_alphas'] = np.full((N_iters, N_weight_types), init_log_alphas)
hyperparams['invlogit_betas'] = np.full((N_iters, N_weight_types), init_invlogit_betas)
fixed_hyperparams = VectorParser()
fixed_hyperparams['log_L2_reg'] = np.full(N_weight_types, init_log_L2_reg)
def primal_optimizer(hyperparam_vect, i_hyper):
def indexed_loss_fun(w, L2_vect, i_iter):
rs = RandomState((seed, i_hyper, i_iter)) # Deterministic seed needed for backwards pass.
idxs = rs.randint(N_train, size=batch_size)
return loss_fun(w, train_data['X'][idxs], train_data['T'][idxs], L2_vect)
learning_curve_dict = defaultdict(list)
def callback(x, v, g, i_iter):
if i_iter % thin == 0:
learning_curve_dict['learning_curve'].append(loss_fun(x, **train_data))
learning_curve_dict['grad_norm'].append(np.linalg.norm(g))
learning_curve_dict['weight_norm'].append(np.linalg.norm(x))
learning_curve_dict['velocity_norm'].append(np.linalg.norm(v))
init_hyperparams = hyperparams.new_vect(hyperparam_vect)
rs = RandomState((seed, i_hyper))
W0 = fill_parser(parser, np.exp(init_hyperparams['log_param_scale']))
W0 *= rs.randn(W0.size)
alphas = np.exp(init_hyperparams['log_alphas'])
betas = logit(init_hyperparams['invlogit_betas'])
L2_reg = fill_parser(parser, np.exp(fixed_hyperparams['log_L2_reg']))
W_opt = sgd_parsed(grad(indexed_loss_fun), kylist(W0, alphas, betas, L2_reg),
parser, callback=callback)
return W_opt, learning_curve_dict
def hyperloss(hyperparam_vect, i_hyper):
W_opt, _ = primal_optimizer(hyperparam_vect, i_hyper)
return loss_fun(W_opt, **train_data)
hyperloss_grad = grad(hyperloss)
meta_results = defaultdict(list)
old_metagrad = [np.ones(hyperparams.vect.size)]
def meta_callback(hyperparam_vect, i_hyper, metagrad=None):
x, learning_curve_dict = primal_optimizer(hyperparam_vect, i_hyper)
cur_hyperparams = hyperparams.new_vect(hyperparam_vect.copy())
for field in cur_hyperparams.names:
meta_results[field].append(cur_hyperparams[field])
meta_results['train_loss'].append(loss_fun(x, **train_data))
meta_results['valid_loss'].append(loss_fun(x, **valid_data))
meta_results['tests_loss'].append(loss_fun(x, **tests_data))
meta_results['test_err'].append(frac_err(x, **tests_data))
meta_results['learning_curves'].append(learning_curve_dict)
if metagrad is not None:
meta_results['meta_grad_magnitude'].append(np.linalg.norm(metagrad))
meta_results['meta_grad_angle'].append(np.dot(old_metagrad[0], metagrad) \
/ (np.linalg.norm(metagrad)*
np.linalg.norm(old_metagrad[0])))
old_metagrad[0] = metagrad
print "Meta Epoch {0} Train loss {1:2.4f} Valid Loss {2:2.4f}" \
" Test Loss {3:2.4f} Test Err {4:2.4f}".format(
i_hyper, meta_results['train_loss'][-1], meta_results['valid_loss'][-1],
meta_results['train_loss'][-1], meta_results['test_err'][-1])
# Average many gradient evaluations at the initial point.
hypergrads = np.zeros((N_gradients_in_average, hyperparams.vect.size))
for i in xrange(N_gradients_in_average):
hypergrads[i] = hyperloss_grad(hyperparams.vect, i)
print i
first_gradient = hypergrads[0]
avg_gradient = np.mean(hypergrads, axis=0)
# Now do a line search along that direction.
parsed_avg_grad = hyperparams.new_vect(avg_gradient)
stepsize_scale = stepsize_search_rescale/np.max(np.exp(parsed_avg_grad['log_alphas'].ravel()))
stepsizes = np.linspace(-stepsize_scale, stepsize_scale, N_points_in_line_search)
for i, stepsize in enumerate(stepsizes):
cur_hypervect = hyperparams.vect - stepsize * avg_gradient
meta_callback(cur_hypervect, 0) # Use the same random seed every time.
parser.vect = None # No need to pickle zeros
return meta_results, parser, first_gradient, parsed_avg_grad, stepsizes