本文整理汇总了Python中global_utils.R_CLUSTER_FLOW2.hset方法的典型用法代码示例。如果您正苦于以下问题:Python R_CLUSTER_FLOW2.hset方法的具体用法?Python R_CLUSTER_FLOW2.hset怎么用?Python R_CLUSTER_FLOW2.hset使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类global_utils.R_CLUSTER_FLOW2
的用法示例。
在下文中一共展示了R_CLUSTER_FLOW2.hset方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: cal_sensitive_words_work
# 需要导入模块: from global_utils import R_CLUSTER_FLOW2 [as 别名]
# 或者: from global_utils.R_CLUSTER_FLOW2 import hset [as 别名]
def cal_sensitive_words_work(item, sw_list):
timestamp = item['timestamp']
uid = item['uid']
timestamp = ts2datetime(timestamp).replace('-','')
ts = timestamp
map = {}
for w in sw_list:
word = "".join([chr(x) for x in w])
word = word.decode('utf-8')
if not map.__contains__(word):
map[word] = 1
else:
map[word] += 1
try:
sensitive_count_string = r_cluster.hget('sensitive_'+str(ts), str(uid))
sensitive_count_dict = json.loads(sensitive_count_string)
for word in map:
count = map[word]
if sensitive_count_dict.__contains__(word):
sensitive_count_dict[word] += count
else:
sensitive_count_dict[word] = count
r_cluster.hset('sensitive_'+str(ts), str(uid), json.dumps(sensitive_count_dict))
except:
r_cluster.hset('sensitive_'+str(ts), str(uid), json.dumps(map))
示例2: cal_text_work
# 需要导入模块: from global_utils import R_CLUSTER_FLOW2 [as 别名]
# 或者: from global_utils.R_CLUSTER_FLOW2 import hset [as 别名]
def cal_text_work(item):
uid = item['uid']
timestamp = item['timestamp']
date = ts2datetime(timestamp)
ts = datetime2ts(date)
text = item['text']
if isinstance(text, str):
text = text.decode('utf-8', 'ignore')
RE = re.compile(u'#([a-zA-Z-_⺀-⺙⺛-⻳⼀-⿕々〇〡-〩〸-〺〻㐀-䶵一-鿃豈-鶴侮-頻並-龎]+)#', re.UNICODE)
hashtag_list = RE.findall(text)
if hashtag_list:
# there all use unicode·
hashtag_dict = dict()
for hashtag in hashtag_list:
try:
hashtag_dict[hashtag] += 1
except:
hashtag_dict[hashtag] = 1
try:
hashtag_count_string = r_cluster.hget('hashtag_'+str(ts), str(uid))
hashtag_count_dict = json.loads(hashtag_count_string)
for hashtag in hashtag_dict:
count = hashtag_dict[hashtag]
try:
hashtag_count_dict[hashtag] += count
except:
hashtag_count_dict[hashtag] = count
r_cluster.hset('hashtag_'+str(ts), str(uid), json.dumps(hashtag_count_dict))
except:
r_cluster.hset('hashtag_'+str(ts), str(uid), json.dumps(hashtag_dict))
示例3: cal_text_sensitive
# 需要导入模块: from global_utils import R_CLUSTER_FLOW2 [as 别名]
# 或者: from global_utils.R_CLUSTER_FLOW2 import hset [as 别名]
def cal_text_sensitive(item):
text = item['text']
uid = item['uid']
timestamp = item['timestamp']
date = ts2datetime(timestamp)
ts = datetime2ts(date)
if isinstance(text, str):
text = text.decode('utf-8', 'ignore')
sensitive_result = [word for word in SENSITIVE_WORD if word in text]
if sensitive_result:
sensitive_dict = dict()
for word in sensitive_result:
try:
sensitive_dict[word] += 1
except:
sensitive_dict[word] = 1
try:
sensitive_count_string = r_cluster.hget('sensitive_'+str(ts), str(uid))
sensitive_count_dict = json.loads(sensitive_count_string)
for word in sensitive_dict:
count = sensitive_dict[word]
try:
sensitive_count_dict[word] += count
except:
sensitive_count_dict[word] = count
r_cluster.hset('sensitive_'+str(ts), str(uid), json.dumps(sensitive_count_dict))
except:
r_cluster.hset('sensitive_'+str(ts), str(uid), json.dumps(sensitive_dict))
示例4: save_activity
# 需要导入模块: from global_utils import R_CLUSTER_FLOW2 [as 别名]
# 或者: from global_utils.R_CLUSTER_FLOW2 import hset [as 别名]
def save_activity(uid, ts, time_segment):
key = str(ts)
try:
activity_count_dict = r_cluster.hget('activity_' + key, str(uid))
activity_count_dict = json.loads(activity_count_dict)
try:
activity_count_dict[str(time_segment)] += 1
except:
activity_count_dict[str(time_segment)] = 1
r_cluster.hset('activity_' + key, str(uid), json.dumps(activity_count_dict))
except:
r_cluster.hset('activity_' + key, str(uid), json.dumps({str(time_segment): 1}))
示例5: save_city
# 需要导入模块: from global_utils import R_CLUSTER_FLOW2 [as 别名]
# 或者: from global_utils.R_CLUSTER_FLOW2 import hset [as 别名]
def save_city(uid, ip, timestamp):
date = ts2datetime(timestamp)
ts = datetime2ts(date)
key = str(uid)
try:
ip_count_string = r_cluster.hget('ip_'+str(ts), str(uid))
ip_count_dict = json.loads(ip_count_string)
try:
ip_count_dict[str(ip)] += 1
except:
ip_count_dict[str(ip)] = 1
r_cluster.hset('ip_'+str(ts), str(uid), json.dumps(ip_count_dict))
except:
r_cluster.hset('ip_'+str(ts), str(uid), json.dumps({str(ip):1}))
示例6: save_at
# 需要导入模块: from global_utils import R_CLUSTER_FLOW2 [as 别名]
# 或者: from global_utils.R_CLUSTER_FLOW2 import hset [as 别名]
def save_at(uid, at_uid, timestamp):
date = ts2datetime(timestamp)
ts = datetime2ts(date)
key = str(uid)
try:
ruid_count_string = r_cluster.hget('at_'+str(ts), str(uid))
ruid_count_dict = json.loads(ruid_count_string)
try:
ruid_count_dict[str(at_uid)] += 1
except:
ruid_count_dict[str(at_uid)] = 1
r_cluster.hset('at_'+str(ts), str(uid), json.dumps(ruid_count_dict))
except:
r_cluster.hset('at_'+str(ts), str(uid), json.dumps({str(at_uid):1}))
示例7: save_city
# 需要导入模块: from global_utils import R_CLUSTER_FLOW2 [as 别名]
# 或者: from global_utils.R_CLUSTER_FLOW2 import hset [as 别名]
def save_city(uid, ip, timestamp, sensitive):
ts = ts2datetime(timestamp).replace('-','')
key = str(uid)
try:
if sensitive:
ip_count_string = r_cluster.hget('sensitive_ip_'+str(ts), str(uid))
else:
ip_count_string = r_cluster.hget('ip_'+str(ts), str(uid))
ip_count_dict = json.loads(ip_count_string)
try:
ip_count_dict[str(ip)] += 1
except:
ip_count_dict[str(ip)] = 1
if sensitive:
r_cluster.hset('sensitive_ip_'+str(ts), str(uid), json.dumps(ip_count_dict))
else:
r_cluster.hset('ip_'+str(ts), str(uid), json.dumps(ip_count_dict))
except:
if sensitive:
r_cluster.hset('sensitive_ip_'+str(ts), str(uid), json.dumps({str(ip):1}))
else:
r_cluster.hset('ip_'+str(ts), str(uid), json.dumps({str(ip):1}))
示例8: save_city_timestamp
# 需要导入模块: from global_utils import R_CLUSTER_FLOW2 [as 别名]
# 或者: from global_utils.R_CLUSTER_FLOW2 import hset [as 别名]
def save_city_timestamp(uid, ip, timestamp):
date = ts2datetime(timestamp)
ts = datetime2ts(date)
try:
ip_timestamp_string = r_cluster.hget('new_ip_'+str(ts), str(uid))
ip_timestamp_string_dict = json.loads(ip_timestamp_string)
try:
add_string = '&'+str(timestamp)
ip_timestamp_string_dict[str(ip)] += add_string
except:
ip_timestamp_string_dict[str(ip)] = str(timestamp)
r_cluster.hset('new_ip_'+str(ts), str(uid), json.dumps(ip_timestamp_string_dict))
except:
r_cluster.hset('new_ip_'+str(ts), str(uid), json.dumps({str(ip): str(timestamp)}))
示例9: cal_hashtag_work
# 需要导入模块: from global_utils import R_CLUSTER_FLOW2 [as 别名]
# 或者: from global_utils.R_CLUSTER_FLOW2 import hset [as 别名]
def cal_hashtag_work(item, sensitive):
text = item['text']
uid = item['uid']
timestamp = item['timestamp']
ts = ts2datetime(timestamp).replace('-','')
if isinstance(text, str):
text = text.decode('utf-8', 'ignore')
RE = re.compile(u'#([a-zA-Z-_⺀-⺙⺛-⻳⼀-⿕々〇〡-〩〸-〺〻㐀-䶵一-鿃豈-鶴侮-頻並-龎]+)#', re.UNICODE)
hashtag_list = RE.findall(text)
if hashtag_list:
hashtag_dict = {}
for hashtag in hashtag_list:
try:
hashtag_dict[hashtag] += 1
except:
hashtag_dict[hashtag] = 1
try:
if sensitive:
hashtag_count_string = r_cluster.hget('sensitive_hashtag_'+str(ts), str(uid))
else:
hashtag_count_string = r_cluster.hget('hashtag_'+str(ts), str(uid))
hashtag_count_dict = json.loads(hashtag_count_string)
for hashtag in hashtag_dict:
count = hashtag_dict[hashtag]
try:
hashtag_count_dict[hashtag] += count
except:
hashtag_count_dict[hashtag] = count
if sensitive:
r_cluster.hset('sensitive_hashtag_'+str(ts), str(uid), json.dumps(hashtag_count_dict))
else:
r_cluster.hset('hashtag_'+str(ts), str(uid), json.dumps(hashtag_count_dict))
except:
if sensitive:
r_cluster.hset('sensitive_hashtag_'+str(ts), str(uid), json.dumps(hashtag_dict))
else:
r_cluster.hset('hashtag_'+str(ts), str(uid), json.dumps(hashtag_dict))
示例10: save_at
# 需要导入模块: from global_utils import R_CLUSTER_FLOW2 [as 别名]
# 或者: from global_utils.R_CLUSTER_FLOW2 import hset [as 别名]
def save_at(uid, at_uid, timestamp, sensitive):
ts = ts2datetime(timestamp).replace('-','')
key = str(uid)
try:
if sensitive:
ruid_count_string = r_cluster.hget('sensitive_at_'+str(ts), str(uid))
else:
ruid_count_string = r_cluster.hget('at_'+str(ts), str(uid))
ruid_count_dict = json.loads(ruid_count_string)
try:
ruid_count_dict[str(at_uid)] += 1
except:
ruid_count_dict[str(at_uid)] = 1
if sensitive:
r_cluster.hset('sensitive_at_'+str(ts), str(uid), json.dumps(ruid_count_dict))
else:
r_cluster.hset('at_'+str(ts), str(uid), json.dumps(ruid_count_dict))
except:
if sensitive:
r_cluster.hset('sensitive_at_'+str(ts), str(uid), json.dumps({str(at_uid):1}))
else:
r_cluster.hset('at_'+str(ts), str(uid), json.dumps({str(at_uid):1}))
示例11: cal_propage_work
# 需要导入模块: from global_utils import R_CLUSTER_FLOW2 [as 别名]
# 或者: from global_utils.R_CLUSTER_FLOW2 import hset [as 别名]
def cal_propage_work(item, sensitive_words):
cluster_redis = R_CLUSTER_FLOW1
user = str(item['uid'])
followers_count = item['user_fansnum']
friends_count = item.get("user_friendsnum", 0)
cluster_redis.hset(user, 'user_fansnum', followers_count)
cluster_redis.hset(user, 'user_friendsnum', friends_count)
retweeted_uid = str(item['root_uid'])
retweeted_mid = str(item['root_mid'])
message_type = int(item['message_type'])
mid = str(item['mid'])
timestamp = item['timestamp']
text = item['text']
sw_list = searchWord(text.encode('utf-8'))
sensitive_result = len(sw_list)
if sensitive_result:
date = ts2datetime(timestamp)
ts = datetime2ts(date)
map = {}
for w in sw_list:
word = "".join([chr(x) for x in w])
word = word.decode('utf-8')
print word
if not map.__contains__(word):
map[word] = 1
else:
map[word] += 1
try:
sensitive_count_string = r_cluster.hget('sensitive_'+str(ts), str(uid))
sensitive_count_dict = json.loads(sensitive_count_string)
for word in map:
count = map[word]
if sensitive_count_dict.__contains__(word):
sensitive_count_dict[word] += count
else:
sensitive_count_dict[word] = count
r_cluster.hset('sensitive_'+str(ts), str(uid), json.dumps(sensitive_count_dict))
except:
r_cluster.hset('sensitive_'+str(ts), str(uid), json.dumps(sensitive_dict))
if message_type == 1:
cluster_redis.sadd('user_set', user)
if sensitive_result:
cluster_redis.hset('s_'+user, mid + '_origin_weibo_timestamp', timestamp)
else:
cluster_redis.hset(user, mid + '_origin_weibo_timestamp', timestamp)
elif message_type == 2: # comment weibo
cluster_redis.sadd('user_set', user)
if cluster_redis.sismember(user + '_comment_weibo', retweeted_mid) or cluster_redis.sismember('s_' + user + '_comment_weibo', retweeted_mid):
return
#RE = re.compile(u'//@([a-zA-Z-_⺀-⺙⺛-⻳⼀-⿕々〇〡-〩〸-〺〻㐀-䶵一-鿃豈-鶴侮-頻並-龎]+):', re.UNICODE)
#nicknames = RE.findall(text)
if not sensitive_result:
cluster_redis.sadd(user + '_comment_weibo', retweeted_mid)
queue_index = get_queue_index(timestamp)
cluster_redis.hincrby(user, 'comment_weibo', 1)
if 1:
#if len(nicknames) == 0:
cluster_redis.hincrby(retweeted_uid, retweeted_mid + '_origin_weibo_comment', 1)
cluster_redis.hincrby(retweeted_uid, 'origin_weibo_comment_timestamp_%s' % queue_index, 1)
cluster_redis.hset(retweeted_uid, retweeted_mid + '_origin_weibo_comment_timestamp', timestamp)
"""
else:
nick_id_ = nicknames[0]
_id = single_redis.hget(NICK_UID_NAMESPACE, nick_id_)
print _id
single_redis.hset(ACTIVE_NICK_UID_NAMESPACE, nick_id_, _id)
if _id:
cluster_redis.hincrby(str(_id), retweeted_mid + '_retweeted_weibo_comment', 1)
cluster_redis.hincrby(str(_id), 'retweeted_weibo_comment_timestamp_%s' % queue_index, 1)
cluster_redis.hset(str(_id), retweeted_mid + '_retweeted_weibo_comment_timestamp', timestamp)
"""
else:
cluster_redis.sadd('s_' + user + '_comment_weibo', retweeted_mid)
queue_index = get_queue_index(timestamp)
cluster_redis.hincrby('s_'+user, 'comment_weibo', 1)
if 1:
#if len(nicknames) == 0:
cluster_redis.hincrby('s_' + retweeted_uid, retweeted_mid + '_origin_weibo_comment', 1)
cluster_redis.hincrby('s_' + retweeted_uid, 'origin_weibo_comment_timestamp_%s' % queue_index, 1)
cluster_redis.hset('s_' + retweeted_uid, retweeted_mid + '_origin_weibo_comment_timestamp', timestamp)
"""
else:
nick_id_ = nicknames[0]
_id = single_redis.hget(NICK_UID_NAMESPACE, nick_id_)
print _id
single_redis.hset(ACTIVE_NICK_UID_NAMESPACE, nick_id_, _id)
if _id:
cluster_redis.hincrby('s_' + str(_id), retweeted_mid + '_retweeted_weibo_comment', 1)
cluster_redis.hincrby('s_' + str(_id), 'retweeted_weibo_comment_timestamp_%s' % queue_index, 1)
cluster_redis.hset('s_' + str(_id), retweeted_mid + '_retweeted_weibo_comment_timestamp', timestamp)
"""
#.........这里部分代码省略.........
示例12: ts2datetime
# 需要导入模块: from global_utils import R_CLUSTER_FLOW2 [as 别名]
# 或者: from global_utils.R_CLUSTER_FLOW2 import hset [as 别名]
item['sensitive_words_dict'] = json.dumps({})
timestamp = item['timestamp']
date = ts2datetime(timestamp)
ts = datetime2ts(date)
if sensitive_words_dict:
print sensitive_words_dict.keys()[0]
sensitive_count_string = r_cluster.hget('sensitive_'+str(ts), str(uid))
if sensitive_count_string: #redis取空
sensitive_count_dict = json.loads(sensitive_count_string)
for word in sensitive_words_dict.keys():
if sensitive_count_dict.has_key(word):
sensitive_count_dict[word] += sensitive_words_dict[word]
else:
sensitive_count_dict[word] = sensitive_words_dict[word]
r_cluster.hset('sensitive_'+str(ts), str(uid), json.dumps(sensitive_count_dict))
else:
r_cluster.hset('sensitive_'+str(ts), str(uid), json.dumps(sensitive_words_dict))
#identify whether to mapping new es
weibo_timestamp = item['timestamp']
should_index_name_date = ts2datetime(weibo_timestamp)
if should_index_name_date != now_index_name_date:
if action != [] and xdata != []:
index_name = index_name_pre + now_index_name_date
if bulk_action:
es.bulk(bulk_action, index=index_name, doc_type=index_type, timeout=60)
bulk_action = []
count = 0
now_index_name_date = should_index_name_date
index_name = index_name_pre + now_index_name_date