当前位置: 首页>>代码示例>>Python>>正文


Python R_CLUSTER_FLOW2.hlen方法代码示例

本文整理汇总了Python中global_utils.R_CLUSTER_FLOW2.hlen方法的典型用法代码示例。如果您正苦于以下问题:Python R_CLUSTER_FLOW2.hlen方法的具体用法?Python R_CLUSTER_FLOW2.hlen怎么用?Python R_CLUSTER_FLOW2.hlen使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在global_utils.R_CLUSTER_FLOW2的用法示例。


在下文中一共展示了R_CLUSTER_FLOW2.hlen方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: ts2datetime

# 需要导入模块: from global_utils import R_CLUSTER_FLOW2 [as 别名]
# 或者: from global_utils.R_CLUSTER_FLOW2 import hlen [as 别名]
    r_cluster.delete('activity_'+str(delete_ts))

    #delete hashtag
    r_cluster.delete('hashtag_'+str(delete_ts))

    #delete sensitive words
    r_cluster.delete('sensitive_'+str(delete_ts))

    #delete recommendation
    r.delete('recomment_'+str(delete_date))

if __name__ == "__main__":
    now_ts = time.time()
    current_path = os.getcwd()
    file_path_redis = os.path.join(current_path, 'delete_redis.py')
    print_log = "&".join([file_path_redis, "start", ts2datetime(now_ts)])
    print print_log

    now_datetime = datetime2ts(ts2datetime(now_ts))
    new_ip_number = r_cluster.hlen('new_ip_'+str(now_datetime))
    new_hashtag_number = r_cluster.hlen('hashtag_'+str(now_datetime))

    #if new_ip_number and new_hashtag_number: # flow2/flow4写入新数据,可以清楚8天前数据
    #    main()

    now_ts = time.time()
    print_log = "&".join([file_path_redis, "end", ts2datetime(now_ts)])
    print print_log


开发者ID:ferrero-zhang,项目名称:user_portrait_0324,代码行数:30,代码来源:delete_redis.py

示例2: main

# 需要导入模块: from global_utils import R_CLUSTER_FLOW2 [as 别名]
# 或者: from global_utils.R_CLUSTER_FLOW2 import hlen [as 别名]
def main():
    if RUN_TYPE:
        now_ts = time.time()-DAY # 前一天
        ts = str(datetime2ts(ts2datetime(now_ts)))
    else:
        ts = str(datetime2ts('2013-09-07'))
    now_ts = int(ts)
    sensitive_string = "sensitive_" + ts
    date_string = ts
    update_sensitive_key = "sensitive_score_" + ts # 更新的键
    sensitive_dict_key = "sensitive_dict_" + ts
    sensitive_string_key = "sensitive_string_" + ts
    sensitive_day_change_key = "sensitive_" + ts +"_day_change"
    del_month = datetime2ts(ts2datetime(now_ts - MONTH))
    del_sensitive_key = "sensitive_score_"+str(del_month) # 要删除的键

    former_ts = int(ts) - DAY
    former_date = str(datetime2ts(ts2datetime(former_ts)))
    former_sensitive_key = "sensitive_score_" + former_date

    iter_count = 0
    bulk_action = []

    mappings(ES_SENSITIVE_INDEX)
    total_number = r.hlen(sensitive_string)
    scan_cursor = 0
    print total_number

    while 1:
        re_scan = r.hscan(sensitive_string, scan_cursor, count=1000)
        scan_cursor = re_scan[0]
        if len(re_scan[1]) != 0:
            sensitive_info = re_scan[1] # 字典形式,uid:sensitive_words_dict
            uid_list = sensitive_info.keys()
            sensitive_results = es.mget(index=ES_SENSITIVE_INDEX, doc_type=DOCTYPE_SENSITIVE_INDEX, body={"ids":uid_list})['docs']
            if sensitive_results:
                for item in sensitive_results:
                    uid = item['_id']
                    sensitive_words_dict = json.loads(sensitive_info[uid]) # json.loads
                    current_sensitive_score = 0
                    for k,v in sensitive_words_dict.iteritems():
                        tmp_stage = r_sensitive.hget("sensitive_words", k)
                        if tmp_stage:
                            current_sensitive_score += v*sensitive_score_dict[str(tmp_stage)]
                    if item['found']: # 之前存在相关信息
                        revise_item = item["_source"]
                        if del_sensitive_key in revise_item:
                            item.pop(del_sensitive_key)
                        revise_item['uid'] = uid
                        # 新更新的敏感度
                        revise_item[update_sensitive_key] = current_sensitive_score
                        # 新更新的敏感词
                        revise_item[sensitive_dict_key] = sensitive_info[uid]
                        # 新更新的string
                        revise_item[sensitive_string_key] = "&".join(sensitive_words_dict.keys())
                        # 当天和之前一天、一周和一月均值的差异
                        revise_item['sensitive_day_change'] = current_sensitive_score - revise_item.get(former_sensitive_key, 0)
                        revise_item['sensitive_week_change'] = current_sensitive_score - revise_item.get('sensitive_week_ave', 0)
                        revise_item['sensitive_month_change'] = current_sensitive_score - revise_item.get('sensitive_month_ave', 0)
                        # 更新后week、month的均值和方差
                        revise_item['sensitive_week_ave'], revise_item['sensitive_week_var'], revise_item['sensitive_week_sum'] = compute_week(revise_item, now_ts)
                        revise_item['senstiive_month_ave'], revise_item['sensitive_month_var'], revise_item['sensitive_month_sum'] = compute_month(revise_item, now_ts)

                    else:
                        revise_item = dict()
                        revise_item['uid'] = uid
                        revise_item[update_sensitive_key] = current_sensitive_score
                        revise_item[sensitive_dict_key] = sensitive_info[uid]
                        revise_item[sensitive_string_key] = "&".join(sensitive_words_dict.keys())
                        revise_item['sensitive_day_change'] = current_sensitive_score
                        revise_item['sensitive_week_change'] = current_sensitive_score
                        revise_item['sensitive_month_change'] = current_sensitive_score
                        revise_item['sensitive_week_ave'], revise_item['sensitive_week_var'], revise_item['sensitive_week_sum'] = compute_week(revise_item, now_ts)
                        revise_item['senstiive_month_ave'], revise_item['sensitive_month_var'], revise_item['sensitive_month_sum'] = compute_month(revise_item, now_ts)
                    action = {'index':{'_id': uid}}
                    bulk_action.extend([action, revise_item])
                    iter_count += 1
                    if iter_count % 1000 == 0:
                        es.bulk(bulk_action, index=ES_SENSITIVE_INDEX, doc_type=DOCTYPE_SENSITIVE_INDEX)
                        bulk_action = []
                        print iter_count
        if int(scan_cursor) == 0:
            break
    if bulk_action:
        es.bulk(bulk_action, index=ES_SENSITIVE_INDEX, doc_type=DOCTYPE_SENSITIVE_INDEX)
开发者ID:huxiaoqian,项目名称:revised_user_portrait,代码行数:87,代码来源:all_sensitive.py


注:本文中的global_utils.R_CLUSTER_FLOW2.hlen方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。