本文整理汇总了Python中geometry.Geometry.clear方法的典型用法代码示例。如果您正苦于以下问题:Python Geometry.clear方法的具体用法?Python Geometry.clear怎么用?Python Geometry.clear使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类geometry.Geometry
的用法示例。
在下文中一共展示了Geometry.clear方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from geometry import Geometry [as 别名]
# 或者: from geometry.Geometry import clear [as 别名]
class Sphere:
"""
Класс для общего описания сферы
"""
def __init__(self, render_area):
self.render_area = render_area
self.approximation_step = 0
self.radius = 0
self.projection_name = "default"
# Координаты источника света
self.light_x = 0
self.light_y = 0
self.light_z = -1000
self.geom = Geometry()
def recalculate(self):
# Настройка шагов аппроксимации
circle_count = self.approximation_step
circle_points_count = self.approximation_step + 2
# Считаем окружность
self.geom.clear()
angle_step = 2*math.pi/circle_points_count
for circle_number in range(0, circle_count):
radius_for_point_1 = self.radius * math.sqrt(1 - math.pow((circle_count - (circle_number+1))/circle_count, 2))
z_axis_for_point_1 = self.radius * (circle_count-(circle_number+1))/circle_count
radius_for_point_2 = self.radius * math.sqrt(1 - math.pow((circle_count - circle_number)/circle_count, 2))
z_axis_for_point_2 = self.radius * (circle_count - circle_number) / circle_count
angle = 0
while angle < 2*math.pi:
self.geom.points.append(Geometry.from_polar(radius_for_point_1, angle, z_axis_for_point_1))
self.geom.points.append(Geometry.from_polar(radius_for_point_1, angle+angle_step, z_axis_for_point_1))
self.geom.edges.append((len(self.geom.points)-2, len(self.geom.points)-1))
self.geom.points.append(Geometry.from_polar(radius_for_point_2, angle, z_axis_for_point_2))
self.geom.points.append(Geometry.from_polar(radius_for_point_2, angle+angle_step, z_axis_for_point_2))
self.geom.edges.append((len(self.geom.points)-2, len(self.geom.points)-1))
angle += angle_step
angle = 2*math.pi
while angle > 0:
self.geom.points.append(Geometry.from_polar(radius_for_point_1, angle, -z_axis_for_point_1))
self.geom.points.append(Geometry.from_polar(radius_for_point_1, angle-angle_step, -z_axis_for_point_1))
self.geom.edges.append((len(self.geom.points)-2, len(self.geom.points)-1))
self.geom.points.append(Geometry.from_polar(radius_for_point_2, angle, -z_axis_for_point_2))
self.geom.points.append(Geometry.from_polar(radius_for_point_2, angle-angle_step, -z_axis_for_point_2))
self.geom.edges.append((len(self.geom.points)-2, len(self.geom.points)-1))
angle -= angle_step
for index in range(0, len(self.geom.points), 4):
self.geom.faces.append((index, index+1, index+3, index+2))
self.geom.apply_projection(self.projection_name)
def is_face_visible(self, face):
"""
Определение видимости грани на основе алгоритма Робертса
:param face: грань
:return: True, если видимо, иначе False
"""
p1_index = face[0]
x0 = self.geom.points[p1_index][0]
y0 = self.geom.points[p1_index][1]
z0 = self.geom.points[p1_index][2]
p2_index = face[1]
x1 = self.geom.points[p2_index][0]
y1 = self.geom.points[p2_index][1]
z1 = self.geom.points[p2_index][2]
p3_index = face[2]
x2 = self.geom.points[p3_index][0]
y2 = self.geom.points[p3_index][1]
z2 = self.geom.points[p3_index][2]
a = y0*(z1 - z2) + y1*(z2 - z0) + y2*(z0 - z1)
b = z0*(x1 - x2) + z1*(x2 - x0) + z2*(x0 - x1)
c = x0*(y1 - y2) + x1*(y2 - y0) + x2*(y0 - y1)
d = -(x0*(y1*z2 - y2*z1) + x1*(y2*z0 - y0*z2) + x2*(y0*z1 - y1*z0))
"""
Знак result = Ax + By + Cz + D определяет, с какой стороны по отношению к плоскости находится точка s(x,y,z,w).
Если result > 0, то точка внутри тела
Если result < 0 - на противаположной стороне, а в случае result = 0 точка принадлежит плоскости.
"""
s = np.array([[1, 1, -1000, 1]])
p = np.array([[a],
[b],
[c],
[d]])
#.........这里部分代码省略.........