本文整理汇总了Python中galpy.orbit.Orbit.y方法的典型用法代码示例。如果您正苦于以下问题:Python Orbit.y方法的具体用法?Python Orbit.y怎么用?Python Orbit.y使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类galpy.orbit.Orbit
的用法示例。
在下文中一共展示了Orbit.y方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: evolveorbit
# 需要导入模块: from galpy.orbit import Orbit [as 别名]
# 或者: from galpy.orbit.Orbit import y [as 别名]
def evolveorbit(icon, ti, tau, pot):
global x
global y
o = Orbit(vxvv=icon) # [R,vR,vT,z,vz,phi]
tf = ti+tau
ts = np.linspace(ti,tf,100)
o.integrate(ts, pot, method = 'leapfrog')
x.append(o.x(ts[0]))
y.append(o.y(ts[0]))
return [o.R(tf),o.vR(tf),o.vT(tf),o.z(tf),o.vz(tf),o.phi(tf)]
示例2: integrate_xyzuvw
# 需要导入模块: from galpy.orbit import Orbit [as 别名]
# 或者: from galpy.orbit.Orbit import y [as 别名]
def integrate_xyzuvw(params,ts,lsr_orbit,MWPotential2014):
"""Convenience function"""
vxvv = params.copy()
vxvv[2]=1.0/params[2]
o = Orbit(vxvv=vxvv, radec=True, solarmotion='schoenrich')
o.integrate(ts,MWPotential2014,method='odeint')
xyzuvw = np.zeros( (len(ts),6) )
xyzuvw[:,0] = 1e3*(o.x(ts)-lsr_orbit.x(ts))
xyzuvw[:,1] = 1e3*(o.y(ts)-lsr_orbit.y(ts))
xyzuvw[:,2] = 1e3*(o.z(ts))
xyzuvw[:,3] = o.U(ts) - lsr_orbit.U(ts)
xyzuvw[:,4] = o.V(ts) - lsr_orbit.V(ts)
xyzuvw[:,5] = o.W(ts)
return xyzuvw
示例3: integrate_xyzuvw
# 需要导入模块: from galpy.orbit import Orbit [as 别名]
# 或者: from galpy.orbit.Orbit import y [as 别名]
def integrate_xyzuvw(params,times,lsr_orbit=None,Potential=MWPotential2014):
"""Convenience function. Integrates the motion of a star backwards in time.
Parameters
----------
params: numpy array
Kinematic parameters (RAdeg,DEdeg,Plx,pmRA,pmDE,RV)
ts: times for back propagation, in Myr.
lsr_orbit:
WARNING: messy...
lsr_orbit= Orbit(vxvv=[1.,0,1,0,0.,0],vo=220,ro=8, solarmotion='schoenrich')
lsr_orbit.integrate(ts,MWPotential2014,method='odeint')
MWPotential2014:
WARNING: messy...
from galpy.potential import MWPotential2014
"""
#We allow MWPotential and lsr_orbit to be passed for speed, but can compute/import
#now.
if not lsr_orbit:
lsr_orbit = get_lsr_orbit(times)
#Convert times to galpy units:
ts = -(times/1e3)/bovy_conversion.time_in_Gyr(220.,8.)
params = np.array(params)
vxvv = params.copy()
#We'd prefer to pass parallax in mas, but distance in kpc is accepted. This
#reciporical could be done elsewhere...
vxvv[2]=1.0/params[2]
o = Orbit(vxvv=vxvv, radec=True, solarmotion='schoenrich')
o.integrate(ts,Potential)#,method='odeint')
xyzuvw = np.zeros( (len(ts),6) )
xyzuvw[:,0] = 1e3*(o.x(ts)-lsr_orbit.x(ts))
xyzuvw[:,1] = 1e3*(o.y(ts)-lsr_orbit.y(ts))
#The lsr_orbit is zero in the z direction by definition - the local standard of
#rest is at the midplane of the Galaxy
xyzuvw[:,2] = 1e3*(o.z(ts))
#UVW is relative to the sun. We *could* have used vx, vy and vz. Would these
#have been relative to the LSR?
xyzuvw[:,3] = o.U(ts) - lsr_orbit.U(ts)
xyzuvw[:,4] = o.V(ts) - lsr_orbit.V(ts)
xyzuvw[:,5] = o.W(ts) - lsr_orbit.W(ts) #NB This line changed !!!
return xyzuvw
示例4: plot_stream_xz
# 需要导入模块: from galpy.orbit import Orbit [as 别名]
# 或者: from galpy.orbit.Orbit import y [as 别名]
def plot_stream_xz(plotfilename):
#Read stream
data= numpy.loadtxt(os.path.join(_STREAMSNAPDIR,'gd1_evol_hitres_00800.dat'),
delimiter=',')
aadata= numpy.loadtxt(os.path.join(_STREAMSNAPAADIR,
'gd1_evol_hitres_aa_00800.dat'),
delimiter=',')
thetar= aadata[:,6]
thetar= (numpy.pi+(thetar-numpy.median(thetar))) % (2.*numpy.pi)
if 'sim' in plotfilename:
sindx= numpy.fabs(thetar-numpy.pi) > (4.*numpy.median(numpy.fabs(thetar-numpy.median(thetar))))
else:
sindx= numpy.fabs(thetar-numpy.pi) > (1.5*numpy.median(numpy.fabs(thetar-numpy.median(thetar))))
includeorbit= True
if includeorbit:
npts= 201
pot= potential.LogarithmicHaloPotential(normalize=1.,q=0.9)
pts= numpy.linspace(0.,4.,npts)
#Calculate progenitor orbit around this point
pox= numpy.median(data[:,1])
poy= numpy.median(data[:,3])
poz= numpy.median(data[:,2])
povx= numpy.median(data[:,4])
povy= numpy.median(data[:,6])
povz= numpy.median(data[:,5])
pR,pphi,pZ= bovy_coords.rect_to_cyl(pox,poy,poz)
pvR,pvT,pvZ= bovy_coords.rect_to_cyl_vec(povx,povy,povz,pR,
pphi,pZ,cyl=True)
ppo= Orbit([pR/8.,pvR/220.,pvT/220.,pZ/8.,pvZ/220.,pphi])
pno= Orbit([pR/8.,-pvR/220.,-pvT/220.,pZ/8.,-pvZ/220.,pphi])
ppo.integrate(pts,pot)
pno.integrate(pts,pot)
pvec= numpy.zeros((3,npts*2-1))
pvec[0,:npts-1]= pno.x(pts)[::-1][:-1]
pvec[1,:npts-1]= pno.z(pts)[::-1][:-1]
pvec[2,:npts-1]= pno.y(pts)[::-1][:-1]
pvec[0,npts-1:]= ppo.x(pts)
pvec[1,npts-1:]= ppo.z(pts)
pvec[2,npts-1:]= ppo.y(pts)
pvec*= 8.
includetrack= True
if includetrack:
#Setup stream model
lp= potential.LogarithmicHaloPotential(q=0.9,normalize=1.)
aAI= actionAngleIsochroneApprox(b=0.8,pot=lp)
obs= numpy.array([1.56148083,0.35081535,-1.15481504,
0.88719443,-0.47713334,0.12019596])
#Obs is at time 1312, need to go back 2 Gyr to time 800
obs[1]*= -1.
obs[2]*= -1.
obs[4]*= -1.
o= Orbit(obs)
ts= numpy.linspace(0.,2.*977.7922212082034/1000./bovy_conversion.time_in_Gyr(220.,8.),1001)
o.integrate(ts,lp)
obs= o(ts[-1])._orb.vxvv
obs[1]*= -1.
obs[2]*= -1.
obs[4]*= -1.
tdisrupt= 4.5-2.*977.7922212082034/1000.
sdf= streamdf(_SIGV/220.,progenitor=Orbit(obs),pot=lp,aA=aAI,
leading=True,nTrackChunks=_NTRACKCHUNKS,
tdisrupt=tdisrupt/bovy_conversion.time_in_Gyr(220.,8.),
deltaAngleTrack=1.5*3./5.,multi=_NTRACKCHUNKS)
sdft= streamdf(_SIGV/220.,progenitor=Orbit(obs),pot=lp,aA=aAI,
leading=False,nTrackChunks=_NTRACKCHUNKS,
tdisrupt=tdisrupt/bovy_conversion.time_in_Gyr(220.,8.),
deltaAngleTrack=1.5*3./5.,multi=_NTRACKCHUNKS)
if 'sim' in plotfilename:
#Replace data with simulated data
forwardXY= sdf.sample(int(round(numpy.sum(sindx)/2.)),
xy=True)
backwardXY= sdft.sample(int(round(numpy.sum(sindx)/2.)),
xy=True)
data= numpy.empty((forwardXY.shape[1]+backwardXY.shape[1],7))
data[:forwardXY.shape[1],1]= forwardXY[0]*8.
data[:forwardXY.shape[1],2]= forwardXY[2]*8.
data[:forwardXY.shape[1],3]= forwardXY[1]*8.
data[:forwardXY.shape[1],4]= forwardXY[3]*220.
data[:forwardXY.shape[1],5]= forwardXY[5]*220.
data[:forwardXY.shape[1],6]= forwardXY[4]*220.
data[forwardXY.shape[1]:,1]= backwardXY[0]*8.
data[forwardXY.shape[1]:,2]= backwardXY[2]*8.
data[forwardXY.shape[1]:,3]= backwardXY[1]*8.
data[forwardXY.shape[1]:,4]= backwardXY[3]*220.
data[forwardXY.shape[1]:,5]= backwardXY[5]*220.
data[forwardXY.shape[1]:,6]= backwardXY[4]*220.
sindx= numpy.ones(data.shape[0],dtype='bool')
#Plot
bovy_plot.bovy_print()
bovy_plot.bovy_plot(data[sindx,1],data[sindx,2],'k,',ms=2.,
xlabel=r'$X\,(\mathrm{kpc})$',
ylabel=r'$Z\,(\mathrm{kpc})$',
xrange=[-12.5,-3.],
yrange=[-12.5,-7.])
if numpy.sum(True-sindx) > 0:
#Also plot progenitor
pindx= copy.copy(True-sindx)
pindx[0:9900]= False #subsample
bovy_plot.bovy_plot(data[pindx,1],data[pindx,2],
'k,',overplot=True)
#.........这里部分代码省略.........
示例5: make_sim_movie
# 需要导入模块: from galpy.orbit import Orbit [as 别名]
# 或者: from galpy.orbit.Orbit import y [as 别名]
def make_sim_movie(proj='xz',comov=False,skippng=False,
includeorbit=True):
#Directories
savedirpng= './movies/oph/pngs/'
timestr= '_1Gyr'
# timestr= ''
# massstr= '_lowmass'
massstr= ''
basefilename= 'oph%s_evol%s_' % (massstr,timestr)
moviefilename= 'oph%s_evol%s' % (massstr,timestr)
#Read data
#datafile= 'oph_evol_hitres.dat'
datafile= 'oph%s_evol%s.dat' % (massstr,timestr)
print "Reading data ..."
data= numpy.loadtxt(datafile,comments='#')
print "Done reading data"
if proj.lower() == 'xz':
includeorbit= False #just to be sure
basefilename+= 'xz_'
moviefilename+= '_xz'
x= data[:,1]
y= data[:,3]
if comov:
basefilename+= 'comov_'
moviefilename+= '_comov'
xrange=[-12.,12.]
yrange=[-10.,10.]
else:
xrange=[-18.,18.]
yrange=[-18.,18.]
xlabel=r'$X\,(\mathrm{kpc})$'
ylabel=r'$Z\,(\mathrm{kpc})$'
elif proj.lower() == 'yz':
includeorbit= False #just to be sure
basefilename+= 'yz_'
moviefilename+= '_yz'
x= data[:,2]
y= data[:,3]
if comov:
basefilename+= 'comov_'
moviefilename+= '_comov'
xrange=[-15.,15.]
yrange=[-15.,15.]
else:
xrange=[-18.,18.]
yrange=[-18.,18.]
xlabel=r'$Y\,(\mathrm{kpc})$'
ylabel=r'$Z\,(\mathrm{kpc})$'
elif proj.lower() == 'orbplane':
basefilename+= 'orbplane_'
moviefilename+= '_orbplane'
x= numpy.zeros_like(data[:,1])
y= numpy.zeros_like(data[:,2])
nx= 20000
nt= len(x)/nx
diff= numpy.empty(nt)
if includeorbit:
npts= 201
pot= potential.MWPotential2014
pts= numpy.linspace(0.,4.,npts)
px= numpy.zeros(nt*(2*npts-1))
py= numpy.zeros(nt*(2*npts-1))
ii= 0
#Calculate median angular momentum at t=0, use this to always go to the orbital plane
Lx= numpy.median(data[ii*nx:(ii+1)*nx,2]*data[ii*nx:(ii+1)*nx,6]\
-data[ii*nx:(ii+1)*nx,3]*data[ii*nx:(ii+1)*nx,5])
Ly= numpy.median(data[ii*nx:(ii+1)*nx,3]*data[ii*nx:(ii+1)*nx,4]\
-data[ii*nx:(ii+1)*nx,1]*data[ii*nx:(ii+1)*nx,6])
Lz= numpy.median(data[ii*nx:(ii+1)*nx,1]*data[ii*nx:(ii+1)*nx,5]\
-data[ii*nx:(ii+1)*nx,2]*data[ii*nx:(ii+1)*nx,4])
L= numpy.sqrt(Lx**2.+Ly**2.+Lz**2.)
Lx/= L
Ly/= L
Lz/= L
Txz= numpy.zeros((3,3))
Tz= numpy.zeros((3,3))
Txz[0,0]= Lx/numpy.sqrt(Lx**2.+Ly**2.)
Txz[1,1]= Lx/numpy.sqrt(Lx**2.+Ly**2.)
Txz[1,0]= Ly/numpy.sqrt(Lx**2.+Ly**2.)
Txz[0,1]= -Ly/numpy.sqrt(Lx**2.+Ly**2.)
Txz[2,2]= 1.
Tz[0,0]= Lz
Tz[1,1]= 1.
Tz[2,2]= Lz
Tz[2,0]= -numpy.sqrt(Lx**2.+Ly**2.)
Tz[0,2]= numpy.sqrt(Lx**2.+Ly**2.)
TL= numpy.dot(Tz,Txz)
for ii in range(nt):
if includeorbit:
#Calculate progenitor orbit around this point
pox= numpy.median(data[ii*nx:(ii+1)*nx,1])
poy= numpy.median(data[ii*nx:(ii+1)*nx,3])
poz= numpy.median(data[ii*nx:(ii+1)*nx,2])
povx= numpy.median(data[ii*nx:(ii+1)*nx,4])
povy= numpy.median(data[ii*nx:(ii+1)*nx,6])
povz= numpy.median(data[ii*nx:(ii+1)*nx,5])
pR,pphi,pZ= bovy_coords.rect_to_cyl(pox,poy,poz)
pvR,pvT,pvZ= bovy_coords.rect_to_cyl_vec(povx,povy,povz,pR,
pphi,pZ,cyl=True)
ppo= Orbit([pR/8.,pvR/220.,pvT/220.,pZ/8.,pvZ/220.,pphi])
#.........这里部分代码省略.........
示例6: impulse_deltav_general_orbitintegration
# 需要导入模块: from galpy.orbit import Orbit [as 别名]
# 或者: from galpy.orbit.Orbit import y [as 别名]
def impulse_deltav_general_orbitintegration(v,x,b,w,x0,v0,pot,tmax,galpot,
tmaxfac=10.,nsamp=1000,
integrate_method='symplec4_c'):
"""
NAME:
impulse_deltav_general_orbitintegration
PURPOSE:
calculate the delta velocity to due an encounter with a general spherical potential NOT in the impulse approximation by integrating each particle in the underlying galactic potential; allows for arbitrary velocity vectors and arbitrary shaped streams.
INPUT:
v - velocity of the stream (nstar,3)
x - position along the stream (nstar,3)
b - impact parameter
w - velocity of the subhalo (3)
x0 - position of closest approach (3)
v0 - velocity of stream at closest approach (3)
pot - Potential object or list thereof (should be spherical)
tmax - maximum integration time
galpot - galpy Potential object or list thereof
nsamp(1000) - number of forward integration points
integrate_method= ('symplec4_c') orbit integrator to use (see Orbit.integrate)
OUTPUT:
deltav (nstar,3)
HISTORY:
2015-08-17 - SANDERS
"""
if len(v.shape) == 1: v= numpy.reshape(v,(1,3))
if len(x.shape) == 1: x= numpy.reshape(x,(1,3))
nstar,ndim=numpy.shape(v)
b0 = numpy.cross(w,v0)
b0 *= b/numpy.sqrt(numpy.sum(b0**2))
times = numpy.linspace(0.,tmax,nsamp)
xres = numpy.zeros(shape=(len(x),nsamp*2-1,3))
R, phi, z= bovy_coords.rect_to_cyl(x[:,0],x[:,1],x[:,2])
vR, vp, vz= bovy_coords.rect_to_cyl_vec(v[:,0],v[:,1],v[:,2],
R,phi,z,cyl=True)
for i in range(nstar):
o = Orbit([R[i],vR[i],vp[i],z[i],vz[i],phi[i]])
o.integrate(times,galpot,method=integrate_method)
xres[i,nsamp:,0]=o.x(times)[1:]
xres[i,nsamp:,1]=o.y(times)[1:]
xres[i,nsamp:,2]=o.z(times)[1:]
oreverse = o.flip()
oreverse.integrate(times,galpot,method=integrate_method)
xres[i,:nsamp,0]=oreverse.x(times)[::-1]
xres[i,:nsamp,1]=oreverse.y(times)[::-1]
xres[i,:nsamp,2]=oreverse.z(times)[::-1]
times = numpy.concatenate((-times[::-1],times[1:]))
nsamp = len(times)
X = b0+xres-x0-numpy.outer(times,w)
r = numpy.sqrt(numpy.sum(X**2,axis=-1))
acc = (numpy.reshape(evaluateRforces(r.flatten(),0.,pot),(nstar,nsamp))/r)[:,:,numpy.newaxis]*X
return integrate.simps(acc,x=times,axis=1)
示例7: trace_forward
# 需要导入模块: from galpy.orbit import Orbit [as 别名]
# 或者: from galpy.orbit.Orbit import y [as 别名]
def trace_forward(xyzuvw, time_in_past,
Potential=MWPotential2014, solarmotion=None):
"""Trace forward one star in xyzuvw coords
Parameters
----------
xyzuvw: numpy float array
xyzuvw relative to the local standard of rest at some point in the past.
time_in_past: float
Time in the past that we want to trace forward to the present.
"""
if solarmotion == None:
xyzuvw_sun = np.zeros(6)
elif solarmotion == 'schoenrich':
xyzuvw_sun = [0, 0, 25, 11.1, 12.24, 7.25]
else:
raise UserWarning
if time_in_past == 0:
time_in_past = 1e-5
# print("Time in past must be nonzero: {}".format(time_in_past))
# raise UserWarning
times = np.linspace(0, time_in_past, 2)
# Start off with an LSR orbit...
lsr_orbit = get_lsr_orbit(times)
# Convert times to galpy units:
ts = -(times / 1e3) / bovy_conversion.time_in_Gyr(220., 8.)
# Add on the lsr_orbit to get the times in the past.
xyzuvw_gal = np.zeros(6)
xyzuvw_gal[0] = xyzuvw[0] / 1e3 + lsr_orbit.x(ts[-1]) - lsr_orbit.x(ts[0])
xyzuvw_gal[1] = xyzuvw[1] / 1e3 + lsr_orbit.y(ts[-1]) - lsr_orbit.y(ts[0])
# Relative to a zero-height orbit, excluding the solar motion.
xyzuvw_gal[2] = xyzuvw[2] / 1e3
xyzuvw_gal[3] = xyzuvw[3] + lsr_orbit.U(ts[-1]) - lsr_orbit.U(ts[0])
xyzuvw_gal[4] = xyzuvw[4] + lsr_orbit.V(ts[-1]) - lsr_orbit.V(ts[0])
xyzuvw_gal[5] = xyzuvw[5] + lsr_orbit.W(ts[-1]) - lsr_orbit.W(ts[0])
# Now convert to units that galpy understands by default.
# FIXME: !!! Reverse [0] sign here.
l = np.degrees(np.arctan2(xyzuvw_gal[1], -xyzuvw_gal[0]))
b = np.degrees(
np.arctan2(xyzuvw_gal[2], np.sqrt(np.sum(xyzuvw_gal[:2] ** 2))))
dist = np.sqrt(np.sum(xyzuvw_gal[:3] ** 2))
# As we are already in LSR co-ordinates, put in zero for solar motion and
# zo.
o = Orbit([l, b, dist, xyzuvw_gal[3], xyzuvw_gal[4], xyzuvw_gal[5]],
solarmotion=[0, 0, 0], zo=0, lb=True, uvw=True, vo=220, ro=8)
# Integrate this orbit forwards in time.
o.integrate(-ts, Potential) # ,method='odeint')
# Add in the solar z and the solar motion.
xyzuvw_now = np.zeros(6)
xyzuvw_now[0] = 1e3 * (o.x(-ts[-1]) - lsr_orbit.x(0))
xyzuvw_now[1] = 1e3 * o.y(-ts[-1])
xyzuvw_now[2] = 1e3 * o.z(-ts[-1]) - xyzuvw_sun[2]
xyzuvw_now[3] = o.U(-ts[-1]) - xyzuvw_sun[3]
xyzuvw_now[4] = o.V(-ts[-1]) - xyzuvw_sun[4]
xyzuvw_now[5] = o.W(-ts[-1]) - xyzuvw_sun[5]
# pdb.set_trace()
return xyzuvw_now
示例8: Orbit
# 需要导入模块: from galpy.orbit import Orbit [as 别名]
# 或者: from galpy.orbit.Orbit import y [as 别名]
o.integrate(ts, MWPotential, method='dopr54_c')
##Integrating Forward in time
newOrbit = Orbit([o.R(TIME), -o.vR(TIME), -o.vT(TIME), o.z(TIME), -o.vz(TIME), o.phi(TIME)],ro=8.,vo=220.)
newOrbit.turn_physical_off()
newOrbit.integrate(ts, MWPotential, method='dopr54_c')
def randomVelocity(std=.001):
if type(std).__name__ == "Quantity":
return nu.random.normal(scale=std.value)*std.unit
return nu.random.normal(scale=std)
time1 = nu.arange(0, TIME.value, dt.value)*units.Myr
orbits_pos = nu.empty((len(time1) + 1,9,len(ts)), dtype=units.quantity.Quantity)
orbits_pos[0, :, :] = ts, newOrbit.x(ts), newOrbit.y(ts), newOrbit.z(ts), newOrbit.vx(ts), newOrbit.vy(ts), newOrbit.vz(ts), newOrbit.ra(ts), newOrbit.dec(ts)
orbits_pos[:,:,:] = orbits_pos[0,:,:]
i = 0
std = 0.004
stdR = std
stdT = std
stdz = std
for t in time1:
print t
dvR = randomVelocity(stdR)
dvT = randomVelocity(stdT)
dvz = randomVelocity(stdz)
#dvR, dvT, dvz = 0,0,0
tempOrbit = Orbit([newOrbit.R(t), newOrbit.vR(t) + dvR, newOrbit.vT(t) + dvT, newOrbit.z(t), newOrbit.vz(t) + dvz, newOrbit.phi(t)],ro=8.,vo=220.)
tempOrbit.turn_physical_off()
time = nu.arange(0,(TIME + step_size - t).value,step_size.value)*units.Myr
示例9: Orbit
# 需要导入模块: from galpy.orbit import Orbit [as 别名]
# 或者: from galpy.orbit.Orbit import y [as 别名]
#ra,dec,Dist,UVel,VVel,WVel,RVel,pmRA,pmDE
orbit = Orbit(vxvv=[ra, dec, distance, pm_ra, pm_dec, velocity], radec=True, uvw=False, lb=False, vo=v0_mc, ro=r0_mc, zo=z0_mc, solarmotion='schoenrich')
distancesJ.append(distanceJ)
distancesK.append(distanceK)
velocity_field = [
ra,
dec,
distance,
pm_ra,
pm_dec,
velocity,
orbit.x() * r0,
orbit.y() * r0,
orbit.z() * r0,
orbit.U()[0],
orbit.V()[0],
orbit.W()[0],
orbit.vx()[0] * v0_mc,
orbit.vy()[0] * v0_mc,
orbit.vz() * v0_mc,
orbit.vR() * v0_mc,
orbit.vT() * v0_mc,
orbit.vphi()[0] * v0_mc,
orbit.L()[0][2] * v0 * r0, # Lz, 18
orbit.E(pot=MWPotential) * pow(v0, 2)/2, # Energy
pow(np.sum(pow(orbit.L()[0][:2], 2)), 0.5) * v0 * r0 # Lperp
]
示例10: plot_stream_xz
# 需要导入模块: from galpy.orbit import Orbit [as 别名]
# 或者: from galpy.orbit.Orbit import y [as 别名]
def plot_stream_xz(plotfilename):
#Read stream
data= numpy.loadtxt(os.path.join(_STREAMSNAPDIR,'gd1_evol_hitres_01312.dat'),
delimiter=',')
includeorbit= True
if includeorbit:
npts= 201
pot= potential.LogarithmicHaloPotential(normalize=1.,q=0.9)
pts= numpy.linspace(0.,4.,npts)
#Calculate progenitor orbit around this point
pox= numpy.median(data[:,1])
poy= numpy.median(data[:,3])
poz= numpy.median(data[:,2])
povx= numpy.median(data[:,4])
povy= numpy.median(data[:,6])
povz= numpy.median(data[:,5])
pR,pphi,pZ= bovy_coords.rect_to_cyl(pox,poy,poz)
pvR,pvT,pvZ= bovy_coords.rect_to_cyl_vec(povx,povy,povz,pR,
pphi,pZ,cyl=True)
ppo= Orbit([pR/8.,pvR/220.,pvT/220.,pZ/8.,pvZ/220.,pphi])
pno= Orbit([pR/8.,-pvR/220.,-pvT/220.,pZ/8.,-pvZ/220.,pphi])
ppo.integrate(pts,pot)
pno.integrate(pts,pot)
pvec= numpy.zeros((3,npts*2-1))
pvec[0,:npts-1]= pno.x(pts)[::-1][:-1]
pvec[1,:npts-1]= pno.z(pts)[::-1][:-1]
pvec[2,:npts-1]= pno.y(pts)[::-1][:-1]
pvec[0,npts-1:]= ppo.x(pts)
pvec[1,npts-1:]= ppo.z(pts)
pvec[2,npts-1:]= ppo.y(pts)
pvec*= 8.
includetrack= True
if includetrack:
#Setup stream model
lp= potential.LogarithmicHaloPotential(q=0.9,normalize=1.)
aAI= actionAngleIsochroneApprox(b=0.8,pot=lp)
obs= numpy.array([1.56148083,0.35081535,-1.15481504,
0.88719443,-0.47713334,0.12019596])
sdf= streamdf(_SIGV/220.,progenitor=Orbit(obs),pot=lp,aA=aAI,
leading=True,nTrackChunks=_NTRACKCHUNKS,
tdisrupt=4.5/bovy_conversion.time_in_Gyr(220.,8.))
sdft= streamdf(_SIGV/220.,progenitor=Orbit(obs),pot=lp,aA=aAI,
leading=False,nTrackChunks=_NTRACKCHUNKS,
tdisrupt=4.5/bovy_conversion.time_in_Gyr(220.,8.))
#Plot
bovy_plot.bovy_print()
bovy_plot.bovy_plot(data[:,1],data[:,2],'k,',
xlabel=r'$X\,(\mathrm{kpc})$',
ylabel=r'$Z\,(\mathrm{kpc})$',
xrange=[0.,16.],
yrange=[-0.5,11.])
if includeorbit:
bovy_plot.bovy_plot(pox,poz,'o',color='0.5',mec='none',overplot=True,ms=8)
bovy_plot.bovy_plot(pvec[0,:],pvec[1,:],'k--',overplot=True,lw=1.)
if includetrack:
d1= 'x'
d2= 'z'
sdf.plotTrack(d1=d1,d2=d2,interp=True,color='k',spread=0,
overplot=True,lw=1.,scaleToPhysical=True)
sdft.plotTrack(d1=d1,d2=d2,interp=True,color='k',spread=0,
overplot=True,lw=1.,scaleToPhysical=True)
#Also create inset
pyplot.plot([12.,12.],[0.5,7.5],'k-')
pyplot.plot([14.5,14.5],[0.5,7.5],'k-')
pyplot.plot([12.,14.5],[0.5,0.5],'k-')
pyplot.plot([12.,14.5],[7.5,7.5],'k-')
pyplot.plot([12.,8.8],[7.5,7.69],'k:')
pyplot.plot([12.,8.8],[0.5,-0.21],'k:')
insetAxes= pyplot.axes([0.15,0.12,0.4,0.55])
pyplot.sca(insetAxes)
bovy_plot.bovy_plot(data[:,1],data[:,2],'k,',
overplot=True)
bovy_plot.bovy_plot(pvec[0,:],pvec[1,:],'k--',overplot=True,lw=1.)
sdf.plotTrack(d1=d1,d2=d2,interp=True,color='k',spread=0,
overplot=True,lw=1.,scaleToPhysical=True)
nullfmt = NullFormatter() # no labels
insetAxes.xaxis.set_major_formatter(nullfmt)
insetAxes.yaxis.set_major_formatter(nullfmt)
insetAxes.set_xlim(12.,14.5)
insetAxes.set_ylim(.5,7.5)
pyplot.tick_params(\
axis='both', # changes apply to the x-axis
which='both', # both major and minor ticks are affected
bottom='off', # ticks along the bottom edge are off
top='off', # ticks along the top edge are off
left='off', # ticks along the bottom edge are off
right='off') # ticks along the top edge are off
bovy_plot.bovy_end_print(plotfilename)
示例11: plot_stream_lb
# 需要导入模块: from galpy.orbit import Orbit [as 别名]
# 或者: from galpy.orbit.Orbit import y [as 别名]
def plot_stream_lb(plotfilename):
#Read stream
data= numpy.loadtxt(os.path.join(_STREAMSNAPDIR,'gd1_evol_hitres_01312.dat'),
delimiter=',')
aadata= numpy.loadtxt(os.path.join(_STREAMSNAPAADIR,
'gd1_evol_hitres_aa_01312.dat'),
delimiter=',')
thetar= aadata[:,6]
thetar= (numpy.pi+(thetar-numpy.median(thetar))) % (2.*numpy.pi)
sindx= numpy.fabs(thetar-numpy.pi) > (1.5*numpy.median(numpy.fabs(thetar-numpy.median(thetar)))) #stars in the stream
#Transform to (l,b)
XYZ= bovy_coords.galcenrect_to_XYZ(data[:,1],data[:,3],data[:,2],Xsun=8.)
lbd= bovy_coords.XYZ_to_lbd(XYZ[0],XYZ[1],XYZ[2],degree=True)
vXYZ= bovy_coords.galcenrect_to_vxvyvz(data[:,4],data[:,6],data[:,5],
vsun=[0.,30.24*8.,0.])
vlbd= bovy_coords.vxvyvz_to_vrpmllpmbb(vXYZ[0],vXYZ[1],vXYZ[2],
lbd[:,0],lbd[:,1],lbd[:,2],
degree=True)
includeorbit= True
if includeorbit:
npts= 201
pot= potential.LogarithmicHaloPotential(normalize=1.,q=0.9)
pts= numpy.linspace(0.,4.,npts)
#Calculate progenitor orbit around this point
pox= numpy.median(data[:,1])
poy= numpy.median(data[:,3])
poz= numpy.median(data[:,2])
povx= numpy.median(data[:,4])
povy= numpy.median(data[:,6])
povz= numpy.median(data[:,5])
pR,pphi,pZ= bovy_coords.rect_to_cyl(pox,poy,poz)
pvR,pvT,pvZ= bovy_coords.rect_to_cyl_vec(povx,povy,povz,pR,
pphi,pZ,cyl=True)
ppo= Orbit([pR/8.,pvR/220.,pvT/220.,pZ/8.,pvZ/220.,pphi])
pno= Orbit([pR/8.,-pvR/220.,-pvT/220.,pZ/8.,-pvZ/220.,pphi])
ppo.integrate(pts,pot)
pno.integrate(pts,pot)
pvec= numpy.zeros((6,npts*2-1))
pvec[0,:npts-1]= pno.x(pts)[::-1][:-1]
pvec[1,:npts-1]= pno.z(pts)[::-1][:-1]
pvec[2,:npts-1]= pno.y(pts)[::-1][:-1]
pvec[0,npts-1:]= ppo.x(pts)
pvec[1,npts-1:]= ppo.z(pts)
pvec[2,npts-1:]= ppo.y(pts)
pvec[3,:npts-1]= -pno.vx(pts)[::-1][:-1]
pvec[4,:npts-1]= -pno.vz(pts)[::-1][:-1]
pvec[5,:npts-1]= -pno.vy(pts)[::-1][:-1]
pvec[3,npts-1:]= ppo.vx(pts)
pvec[4,npts-1:]= ppo.vz(pts)
pvec[5,npts-1:]= ppo.vy(pts)
pvec[:3,:]*= 8.
pvec[3:,:]*= 220.
pXYZ= bovy_coords.galcenrect_to_XYZ(pvec[0,:],pvec[2,:],pvec[1,:],
Xsun=8.)
plbd= bovy_coords.XYZ_to_lbd(pXYZ[0],pXYZ[1],pXYZ[2],degree=True)
pvXYZ= bovy_coords.galcenrect_to_vxvyvz(pvec[3,:],pvec[5,:],pvec[4,:],
vsun=[0.,30.24*8.,0.])
pvlbd= bovy_coords.vxvyvz_to_vrpmllpmbb(pvXYZ[0],pvXYZ[1],pvXYZ[2],
plbd[:,0],plbd[:,1],plbd[:,2],
degree=True)
includetrack= True
if includetrack:
#Setup stream model
lp= potential.LogarithmicHaloPotential(q=0.9,normalize=1.)
aAI= actionAngleIsochroneApprox(b=0.8,pot=lp)
obs= numpy.array([1.56148083,0.35081535,-1.15481504,
0.88719443,-0.47713334,0.12019596])
sdf= streamdf(_SIGV/220.,progenitor=Orbit(obs),pot=lp,aA=aAI,
leading=True,nTrackChunks=_NTRACKCHUNKS,
vsun=[0.,30.24*8.,0.],
tdisrupt=4.5/bovy_conversion.time_in_Gyr(220.,8.),
multi=_NTRACKCHUNKS)
sdft= streamdf(_SIGV/220.,progenitor=Orbit(obs),pot=lp,aA=aAI,
leading=False,nTrackChunks=_NTRACKCHUNKS,
vsun=[0.,30.24*8.,0.],
tdisrupt=4.5/bovy_conversion.time_in_Gyr(220.,8.),
multi=_NTRACKCHUNKS)
#Plot
bovy_plot.bovy_print(fig_width=8.25,fig_height=3.5)
if 'ld' in plotfilename:
lbindx= 2
ylabel=r'$\mathrm{Distance}\,(\mathrm{kpc})$'
yrange=[0.,30.]
elif 'lvlos' in plotfilename:
lbindx= 0
ylabel=r'$V_\mathrm{los}\,(\mathrm{km\,s}^{-1})$'
yrange=[-500.,500.]
elif 'lpmll' in plotfilename:
lbindx= 1
ylabel=r'$\mu_{l}\cos b\,(\mathrm{mas\,yr}^{-1})$'
yrange=[-2.,13.5]
elif 'lpmbb' in plotfilename:
lbindx= 2
ylabel=r'$\mu_{b}\,(\mathrm{mas\,yr}^{-1})$'
yrange=[-8.,7.]
else:
lbindx= 1
yrange=[-10.,60.]
ylabel=r'$\mathrm{Galactic\ latitude}\,(\mathrm{deg})$'
if 'vlos' in plotfilename or 'pm' in plotfilename:
#.........这里部分代码省略.........
示例12: plot_stream_xz
# 需要导入模块: from galpy.orbit import Orbit [as 别名]
# 或者: from galpy.orbit.Orbit import y [as 别名]
def plot_stream_xz(plotfilename):
#Read stream
data= numpy.loadtxt(os.path.join(_STREAMSNAPDIR,'gd1-hisigv_evol_00041.dat'),
delimiter=',')
includeorbit= True
if includeorbit:
npts= 201
pot= potential.LogarithmicHaloPotential(normalize=1.,q=0.9)
pts= numpy.linspace(0.,17.,npts)
#Calculate progenitor orbit around this point
pox= numpy.median(data[:,1])
poy= numpy.median(data[:,3])
poz= numpy.median(data[:,2])
povx= numpy.median(data[:,4])
povy= numpy.median(data[:,6])
povz= numpy.median(data[:,5])
pR,pphi,pZ= bovy_coords.rect_to_cyl(pox,poy,poz)
pvR,pvT,pvZ= bovy_coords.rect_to_cyl_vec(povx,povy,povz,pR,
pphi,pZ,cyl=True)
ppo= Orbit([pR/8.,pvR/220.,pvT/220.,pZ/8.,pvZ/220.,pphi])
pno= Orbit([pR/8.,-pvR/220.,-pvT/220.,pZ/8.,-pvZ/220.,pphi])
ppo.integrate(pts,pot)
pno.integrate(pts,pot)
pvec= numpy.zeros((3,npts*2-1))
pvec[0,:npts-1]= pno.x(pts)[::-1][:-1]
pvec[1,:npts-1]= pno.z(pts)[::-1][:-1]
pvec[2,:npts-1]= pno.y(pts)[::-1][:-1]
pvec[0,npts-1:]= ppo.x(pts)
pvec[1,npts-1:]= ppo.z(pts)
pvec[2,npts-1:]= ppo.y(pts)
pvec*= 8.
includetrack= True
if includetrack:
#Setup stream model
lp= potential.LogarithmicHaloPotential(q=0.9,normalize=1.)
aAI= actionAngleIsochroneApprox(b=0.8,pot=lp)
obs= numpy.array([1.56148083,0.35081535,-1.15481504,
0.88719443,-0.47713334,0.12019596])
sdf= streamdf(_SIGV/220.,progenitor=Orbit(obs),pot=lp,aA=aAI,
leading=True,nTrackChunks=_NTRACKCHUNKS,
tdisrupt=4.5/bovy_conversion.time_in_Gyr(220.,8.),
deltaAngleTrack=13.5,multi=_NTRACKCHUNKS)
sdft= streamdf(_SIGV/220.,progenitor=Orbit(obs),pot=lp,aA=aAI,
leading=False,nTrackChunks=_NTRACKCHUNKS,
tdisrupt=4.5/bovy_conversion.time_in_Gyr(220.,8.),
deltaAngleTrack=13.5,multi=_NTRACKCHUNKS)
#Plot
bovy_plot.bovy_print()
bovy_plot.bovy_plot(data[:,1],data[:,2],'k,',
xlabel=r'$X\,(\mathrm{kpc})$',
ylabel=r'$Z\,(\mathrm{kpc})$',
xrange=[-30.,30.],
yrange=[-20.,20])
if includeorbit:
bovy_plot.bovy_plot(pox,poz,'o',color='0.5',mec='none',overplot=True,ms=8)
bovy_plot.bovy_plot(pvec[0,:],pvec[1,:],'k--',overplot=True,lw=1.)
if includetrack:
d1= 'x'
d2= 'z'
sdf.plotTrack(d1=d1,d2=d2,interp=True,color='k',spread=0,
overplot=True,lw=1.,scaleToPhysical=True)
sdft.plotTrack(d1=d1,d2=d2,interp=True,color='k',spread=0,
overplot=True,lw=1.,scaleToPhysical=True)
bovy_plot.bovy_text(r'$M^p = 2\times 10^7\,M_\odot$'+'\n'+
r'$\sigma_v^p = 14\,\mathrm{km\,s}^{-1}$',
top_left=True,size=16.)
bovy_plot.bovy_end_print(plotfilename)