本文整理汇总了Python中galpy.orbit.Orbit.e方法的典型用法代码示例。如果您正苦于以下问题:Python Orbit.e方法的具体用法?Python Orbit.e怎么用?Python Orbit.e使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类galpy.orbit.Orbit
的用法示例。
在下文中一共展示了Orbit.e方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_orbmethods
# 需要导入模块: from galpy.orbit import Orbit [as 别名]
# 或者: from galpy.orbit.Orbit import e [as 别名]
def test_orbmethods():
from galpy.orbit import Orbit
from galpy.potential import MWPotential2014
o= Orbit([0.8,0.3,0.75,0.,0.2,0.]) # setup R,vR,vT,z,vz,phi
times= numpy.linspace(0.,10.,1001) # Output times
o.integrate(times,MWPotential2014) # Integrate
o.E() # Energy
assert numpy.fabs(o.E()+1.2547650648697966) < 10.**-5., 'Orbit method does not work as expected'
o.L() # Angular momentum
assert numpy.all(numpy.fabs(o.L()-numpy.array([[ 0. , -0.16, 0.6 ]])) < 10.**-5.), 'Orbit method does not work as expected'
o.Jacobi(OmegaP=0.65) #Jacobi integral E-OmegaP Lz
assert numpy.fabs(o.Jacobi(OmegaP=0.65)-numpy.array([-1.64476506])) < 10.**-5., 'Orbit method does not work as expected'
o.ER(times[-1]), o.Ez(times[-1]) # Rad. and vert. E at end
assert numpy.fabs(o.ER(times[-1])+1.27601734263047) < 10.**-5., 'Orbit method does not work as expected'
assert numpy.fabs(o.Ez(times[-1])-0.021252201847851909) < 10.**-5., 'Orbit method does not work as expected'
o.rperi(), o.rap(), o.zmax() # Peri-/apocenter r, max. |z|
assert numpy.fabs(o.rperi()-0.44231993168097) < 10.**-5., 'Orbit method does not work as expected'
assert numpy.fabs(o.rap()-0.87769030382105) < 10.**-5., 'Orbit method does not work as expected'
assert numpy.fabs(o.zmax()-0.077452357289016) < 10.**-5., 'Orbit method does not work as expected'
o.e() # eccentricity (rap-rperi)/(rap+rperi)
assert numpy.fabs(o.e()-0.32982348199330563) < 10.**-5., 'Orbit method does not work as expected'
o.R(2.,ro=8.) # Cylindrical radius at time 2. in kpc
assert numpy.fabs(o.R(2.,ro=8.)-3.5470772876920007) < 10.**-3., 'Orbit method does not work as expected'
o.vR(5.,vo=220.) # Cyl. rad. velocity at time 5. in km/s
assert numpy.fabs(o.vR(5.,vo=220.)-45.202530965094553) < 10.**-3., 'Orbit method does not work as expected'
o.ra(1.), o.dec(1.) # RA and Dec at t=1. (default settings)
# 5/12/2016: test weakened, because improved galcen<->heliocen
# transformation has changed these, but still close
assert numpy.fabs(o.ra(1.)-numpy.array([ 288.19277])) < 10.**-1., 'Orbit method does not work as expected'
assert numpy.fabs(o.dec(1.)-numpy.array([ 18.98069155])) < 10.**-1., 'Orbit method does not work as expected'
o.jr(type='adiabatic'), o.jz() # R/z actions (ad. approx.)
assert numpy.fabs(o.jr(type='adiabatic')-0.05285302231137586) < 10.**-3., 'Orbit method does not work as expected'
assert numpy.fabs(o.jz()-0.006637988850751242) < 10.**-3., 'Orbit method does not work as expected'
# Rad. period w/ Staeckel approximation w/ focal length 0.5,
o.Tr(type='staeckel',delta=0.5,ro=8.,vo=220.) # in Gyr
assert numpy.fabs(o.Tr(type='staeckel',delta=0.5,ro=8.,vo=220.)-0.1039467864018446) < 10.**-3., 'Orbit method does not work as expected'
o.plot(d1='R',d2='z') # Plot the orbit in (R,z)
o.plot3d() # Plot the orbit in 3D, w/ default [x,y,z]
return None
示例2: illustrate_adiabatic_invariance
# 需要导入模块: from galpy.orbit import Orbit [as 别名]
# 或者: from galpy.orbit.Orbit import e [as 别名]
def illustrate_adiabatic_invariance(plotfilename1,plotfilename2):
# Initialize two different IsochronePotentials
ip1= IsochronePotential(normalize=1.,b=1.)
ip2= IsochronePotential(normalize=0.5,b=1.)
# Use TimeInterpPotential to interpolate smoothly between the two
tip= TimeInterpPotential(ip1,ip2,dt=100.,tform=50.)
# Integrate the orbit, in three parts
# 1) Orbit in the first isochrone potential
o1= Orbit([1.,0.1,1.1,0.0,0.1,0.])
ts= numpy.linspace(0.,50.,1001)
o1.integrate(ts,tip)
bovy_plot.bovy_print()
o1.plot(d1='x',d2='y',xrange=[-1.6,1.6],yrange=[-1.6,1.6],color='b',
gcf=True)
# 2) Orbit in the transition
o2= o1(ts[-1]) # Last time step = initial time step of the next integration
ts2= numpy.linspace(50.,150.,1001)
o2.integrate(ts2,tip)
o2.plot(d1='x',d2='y',overplot=True,color='g')
# 3) Orbit in the second isochrone potential
o3= o2(ts2[-1])
ts3= numpy.linspace(150.,200.,1001)
o3.integrate(ts3,ip2)
o3.plot(d1='x',d2='y',overplot=True,color='r')
bovy_plot.bovy_end_print(plotfilename1)
# Also plot the R,z projection
bovy_plot.bovy_print(fig_height=2.3333)
o1.plot(d1='R',d2='z',xrange=[0.9,1.65],yrange=[-.175,.175],color='b',
gcf=True)
o2.plot(d1='R',d2='z',overplot=True,color='g')
o3.plot(d1='R',d2='z',overplot=True,color='r')
bovy_plot.bovy_end_print(plotfilename2)
# Now we calculate the energy, eccentricity, mean radius, and maximum height
print o1.E(pot=ip1), o1.e(), 0.5*(o1.rperi()+o1.rap()), o1.zmax()
print o3.E(pot=ip2), o3.e(), 0.5*(o3.rperi()+o3.rap()), o3.zmax()
# The orbit has clearly moved to larger radii, the actions are however conserved
aAI1= actionAngleIsochrone(ip=ip1)
aAI2= actionAngleIsochrone(ip=ip2)
print aAI1(o1)
print aAI2(o3)
return None
示例3: calc_eccentricity
# 需要导入模块: from galpy.orbit import Orbit [as 别名]
# 或者: from galpy.orbit.Orbit import e [as 别名]
def calc_eccentricity(args, options):
table = os.path.join(args[0],'table2.dat')
readme = os.path.join(args[0],'ReadMe')
dierickx = ascii.read(table, readme=readme)
vxvv = np.dstack([dierickx['RAdeg'], dierickx['DEdeg'], dierickx['Dist']/1e3, dierickx['pmRA'], dierickx['pmDE'], dierickx['HRV']])[0]
ro, vo, zo = 8., 220., 0.025
ra, dec= vxvv[:,0], vxvv[:,1]
lb= bovy_coords.radec_to_lb(ra,dec,degree=True)
pmra, pmdec= vxvv[:,3], vxvv[:,4]
pmllpmbb= bovy_coords.pmrapmdec_to_pmllpmbb(pmra,pmdec,ra,dec,degree=True)
d, vlos= vxvv[:,2], vxvv[:,5]
rectgal= bovy_coords.sphergal_to_rectgal(lb[:,0],lb[:,1],d,vlos,pmllpmbb[:,0], pmllpmbb[:,1],degree=True)
vsolar= np.array([-10.1,4.0,6.7])
vsun= np.array([0.,1.,0.,])+vsolar/vo
X = rectgal[:,0]/ro
Y = rectgal[:,1]/ro
Z = rectgal[:,2]/ro
vx = rectgal[:,3]/vo
vy = rectgal[:,4]/vo
vz = rectgal[:,5]/vo
vsun= np.array([0.,1.,0.,])+vsolar/vo
Rphiz= bovy_coords.XYZ_to_galcencyl(X,Y,Z,Zsun=zo/ro)
vRvTvz= bovy_coords.vxvyvz_to_galcencyl(vx,vy,vz,Rphiz[:,0],Rphiz[:,1],Rphiz[:,2],vsun=vsun,Xsun=1.,Zsun=zo/ro,galcen=True)
#do the integration and individual analytic estimate for each object
ts= np.linspace(0.,20.,10000)
lp= LogarithmicHaloPotential(normalize=1.)
e_ana = numpy.zeros(len(vxvv))
e_int = numpy.zeros(len(vxvv))
print('Performing orbit integration and analytic parameter estimates for Dierickx et al. sample...')
for i in tqdm(range(len(vxvv))):
try:
orbit = Orbit(vxvv[i], radec=True, vo=220., ro=8.)
e_ana[i] = orbit.e(analytic=True, pot=lp, c=True)
except UnboundError:
e_ana[i] = np.nan
orbit.integrate(ts, lp)
e_int[i] = orbit.e(analytic=False)
fig = plt.figure()
fig.set_size_inches(1.5*columnwidth, 1.5*columnwidth)
plt.scatter(e_int, e_ana, s=1, color='Black', lw=0.)
plt.xlabel(r'$\mathrm{galpy\ integrated}\ e$')
plt.ylabel(r'$\mathrm{galpy\ analytic}\ e$')
plt.xlim(0.,1.)
plt.ylim(0.,1.)
fig.tight_layout()
plt.savefig(os.path.join(args[0],'dierickx-integratedeanalytice.png'), format='png', dpi=200)
fig = plt.figure()
fig.set_size_inches(1.5*columnwidth, 1.5*columnwidth)
plt.hist(e_int, bins=30)
plt.xlim(0.,1.)
plt.xlabel(r'$\mathrm{galpy}\ e$')
fig.tight_layout()
plt.savefig(os.path.join(args[0], 'dierickx-integratedehist.png'), format='png', dpi=200)
fig = plt.figure()
fig.set_size_inches(1.5*columnwidth, 1.5*columnwidth)
plt.scatter(dierickx['e'], e_int, s=1, color='Black', lw=0.)
plt.xlabel(r'$\mathrm{Dierickx\ et\ al.}\ e$')
plt.ylabel(r'$\mathrm{galpy\ integrated}\ e$')
plt.xlim(0.,1.)
plt.ylim(0.,1.)
fig.tight_layout()
plt.savefig(os.path.join(args[0],'dierickx-integratedee.png'), format='png', dpi=200)
fig = plt.figure()
fig.set_size_inches(1.5*columnwidth, 1.5*columnwidth)
plt.scatter(dierickx['e'], e_ana, s=1, color='Black', lw=0.)
plt.xlabel(r'$\mathrm{Dierickx\ et\ al.}\ e$')
plt.ylabel(r'$\mathrm{galpy\ estimated}\ e$')
plt.xlim(0.,1.)
plt.ylim(0.,1.)
fig.tight_layout()
plt.savefig(os.path.join(args[0],'dierickx-analyticee.png'), format='png', dpi=200)
arr = numpy.recarray(len(e_ana), dtype=[('analytic_e', float), ('integrated_e', float)])
arr['analytic_e'] = e_ana
arr['integrated_e'] = e_int
with open(os.path.join(args[0],'eccentricities.dat'), 'w') as file:
pickle.dump(arr, file)
file.close()
示例4: calcOrbits
# 需要导入模块: from galpy.orbit import Orbit [as 别名]
# 或者: from galpy.orbit.Orbit import e [as 别名]
def calcOrbits(parser):
options,args= parser.parse_args()
#Read data
XYZ,vxvyvz,cov_vxvyvz,rawdata= readData(metal='allall',
sample=options.sample,
loggmin=4.2,
snmin=15.,
select=options.select)
#Define potential
if options.logp:
pot= LogarithmicHaloPotential(normalize=1.)
else:
pot= MWPotential
ts= numpy.linspace(0.,_MAXT,10000) #times to integrate
if os.path.exists(args[0]):#Load savefile
savefile= open(args[0],'rb')
orbits= pickle.load(savefile)
_ORBITSLOADED= True
try:
samples= pickle.load(savefile)
except EORError:
_SAMPLESLOADED= False
else:
_SAMPLESLOADED= True
finally:
savefile.close()
else:
_ORBITSLOADED= False
if not _ORBITSLOADED:
#First calculate orbits
es, rmeans, rperis, raps, zmaxs = [], [], [], [], []
densrmeans, vzrmeans= [], []
for ii in range(len(rawdata)):
sys.stdout.write('\r'+"Working on object %i/%i" % (ii,len(rawdata)))
sys.stdout.flush()
#Integrate the orbit
data= rawdata[ii]
o= Orbit([data.ra,data.dec,data.dist,data.pmra,data.pmdec,data.vr],
radec=True,vo=220.,ro=8.,zo=_ZSUN)
o.integrate(ts,pot)
es.append(o.e())
rperis.append(o.rperi())
raps.append(o.rap())
zmaxs.append(o.zmax())
rmeans.append(0.5*(o.rperi()+o.rap()))
Rs= o.R(ts)
vz2= o.vz(ts)**2.
dens= evaluateDensities(Rs,0.*Rs,pot)
densrmeans.append(numpy.sum(dens*Rs)/numpy.sum(dens))
vzrmeans.append(numpy.sum(vz2*Rs)/numpy.sum(vz2))
# print " ", rmeans[-1], densrmeans[-1], vzrmeans[-1]
sys.stdout.write('\r'+_ERASESTR+'\r')
sys.stdout.flush()
es= numpy.array(es)
rmeans= numpy.array(rmeans)
rperis= numpy.array(rperis)
raps= numpy.array(raps)
zmaxs= numpy.array(zmaxs)
orbits= _append_field_recarray(rawdata,'e',es)
orbits= _append_field_recarray(orbits,'rmean',rmeans)
orbits= _append_field_recarray(orbits,'rperi',rperis)
orbits= _append_field_recarray(orbits,'rap',raps)
orbits= _append_field_recarray(orbits,'zmax',zmaxs)
orbits= _append_field_recarray(orbits,'densrmean',densrmeans)
orbits= _append_field_recarray(orbits,'vzrmean',vzrmeans)
#Pickle
savefile= open(args[0],'wb')
pickle.dump(orbits,savefile)
savefile.close()
return None
示例5: calc_es
# 需要导入模块: from galpy.orbit import Orbit [as 别名]
# 或者: from galpy.orbit.Orbit import e [as 别名]
def calc_es():
savefilename= 'myes.sav'
if os.path.exists(savefilename):
savefile= open(savefilename,'rb')
mye= pickle.load(savefile)
e= pickle.load(savefile)
savefile.close()
else:
#Read data
dialect= csv.excel
dialect.skipinitialspace=True
reader= csv.reader(open('../data/Dierickx-etal-tab2.txt','r'),delimiter=' ',dialect=dialect)
vxvs= []
es= []
vphis= []
vxs= []
vys= []
vzs= []
ls= []
for row in reader:
thisra= float(row[3])
thisdec= float(row[4])
thisd= float(row[17])/1000.
thispmra= float(row[13])
thispmdec= float(row[15])
thisvlos= float(row[11])
thise= float(row[26])
vxvs.append([thisra,thisdec,thisd,thispmra,thispmdec,thisvlos])
es.append(thise)
vphis.append(float(row[25]))
vxs.append(float(row[19]))
vys.append(float(row[21]))
vzs.append(float(row[23]))
ls.append(float(row[5]))
vxvv= nu.array(vxvs)
e= nu.array(es)
vphi= nu.array(vphis)
vx= nu.array(vxs)
vy= nu.array(vys)
vz= nu.array(vzs)
l= nu.array(ls)
#Define potential
lp= LogarithmicHaloPotential(normalize=1.)
mp= MiyamotoNagaiPotential(a=0.5,b=0.0375,amp=1.,normalize=.6)
np= NFWPotential(a=4.5,normalize=.35)
hp= HernquistPotential(a=0.6/8,normalize=0.05)
ts= nu.linspace(0.,20.,10000)
mye= nu.zeros(len(e))
for ii in range(len(e)):
#Integrate the orbit
o= Orbit(vxvv[ii,:],radec=True,vo=220.,ro=8.)
o.integrate(ts,lp)
mye[ii]= o.e()
#Save
savefile= open(savefilename,'wb')
pickle.dump(mye,savefile)
pickle.dump(e,savefile)
savefile.close()
#plot
plot.bovy_print()
plot.bovy_plot(nu.array([0.,1.]),nu.array([0.,1.]),'k-',
xlabel=r'$\mathrm{Dierickx\ et\ al.}\ e$',
ylabel=r'$\mathrm{galpy}\ e$')
plot.bovy_plot(e,mye,'k,',overplot=True)
plot.bovy_end_print('myee.png')
plot.bovy_print()
plot.bovy_hist(e,bins=30,xlabel=r'$\mathrm{Dierickx\ et\ al.}\ e$')
plot.bovy_end_print('ehist.png')
plot.bovy_print()
plot.bovy_hist(mye,bins=30,xlabel=r'$\mathrm{galpy}\ e$')
plot.bovy_end_print('myehist.png')
示例6: calcj
# 需要导入模块: from galpy.orbit import Orbit [as 别名]
# 或者: from galpy.orbit.Orbit import e [as 别名]
def calcj(rotcurve):
if rotcurve == 'flat':
savefilename= 'myjs.sav'
elif rotcurve == 'power':
savefilename= 'myjs_power.sav'
if os.path.exists(savefilename):
savefile= open(savefilename,'rb')
myjr= pickle.load(savefile)
myjp= pickle.load(savefile)
mywr= pickle.load(savefile)
mywp= pickle.load(savefile)
mye= pickle.load(savefile)
myzmax= pickle.load(savefile)
e= pickle.load(savefile)
zmax= pickle.load(savefile)
savefile.close()
else:
dialect= csv.excel
dialect.skipinitialspace=True
reader= csv.reader(open('../data/gcs.tsv','r'),delimiter='|',dialect=dialect)
vxvs= []
es= []
zmaxs= []
for row in reader:
if row[0][0] == '#':
continue
thisra= row[0]
thisdec= row[1]
thisd= read_float(row[2])/1000.
if thisd > 0.2: continue
thisu= read_float(row[3])
thisv= read_float(row[4])
thisw= read_float(row[5])
thise= read_float(row[6])
thiszmax= read_float(row[7])
if thisd == -9999 or thisu == -9999 or thisv == -9999 or thisw == -9999:
continue
vxvs.append([hms_to_rad(thisra),dms_to_rad(thisdec),
thisd,thisu,thisv,thisw])
es.append(thise)
zmaxs.append(thiszmax)
vxvv= nu.array(vxvs)
e= nu.array(es)
zmax= nu.array(zmaxs)
#Define potential
lp= LogarithmicHaloPotential(normalize=1.)
pp= PowerSphericalPotential(normalize=1.,alpha=-2.)
mp= MiyamotoNagaiPotential(a=0.5,b=0.0375,amp=1.,normalize=.6)
np= NFWPotential(a=4.5,normalize=.35)
hp= HernquistPotential(a=0.6/8,normalize=0.05)
ts= nu.linspace(0.,20.,10000)
myjr= nu.zeros(len(e))
myjp= nu.zeros(len(e))
mywr= nu.zeros(len(e))
mywp= nu.zeros(len(e))
mye= nu.zeros(len(e))
myzmax= nu.zeros(len(e))
for ii in range(len(e)):
#Integrate the orbit
o= Orbit(vxvv[ii,:],radec=True,uvw=True,vo=220.,ro=8.)
#o.integrate(ts,[mp,np,hp])
if rotcurve == 'flat':
o.integrate(ts,lp)
mye[ii]= o.e()
myzmax[ii]= o.zmax()*8.
print e[ii], mye[ii], zmax[ii], myzmax[ii]
o= o.toPlanar()
myjr[ii]= o.jr(lp)[0]
else:
o= o.toPlanar()
myjr[ii]= o.jr(pp)[0]
myjp[ii]= o.jp()[0]
mywr[ii]= o.wr()[0]
mywp[ii]= o.wp()
#Save
savefile= open(savefilename,'wb')
pickle.dump(myjr,savefile)
pickle.dump(myjp,savefile)
pickle.dump(mywr,savefile)
pickle.dump(mywp,savefile)
pickle.dump(mye,savefile)
pickle.dump(myzmax,savefile)
pickle.dump(e,savefile)
pickle.dump(zmax,savefile)
savefile.close()
#plot
if rotcurve == 'flat':
plot.bovy_print()
plot.bovy_plot(nu.array([0.,1.]),nu.array([0.,1.]),'k-',
xlabel=r'$\mathrm{Holmberg\ et\ al.}\ e$',
ylabel=r'$\mathrm{galpy}\ e$')
plot.bovy_plot(e,mye,'k,',overplot=True)
plot.bovy_end_print('myee.png')
plot.bovy_print()
plot.bovy_plot(nu.array([0.,2.5]),
#.........这里部分代码省略.........
示例7: calcj
# 需要导入模块: from galpy.orbit import Orbit [as 别名]
# 或者: from galpy.orbit.Orbit import e [as 别名]
def calcj(rotcurve):
if rotcurve == "flat":
savefilename = "myjs.sav"
elif rotcurve == "power":
savefilename = "myjs_power.sav"
if os.path.exists(savefilename):
savefile = open(savefilename, "rb")
myjr = pickle.load(savefile)
myjp = pickle.load(savefile)
mye = pickle.load(savefile)
myzmax = pickle.load(savefile)
e = pickle.load(savefile)
zmax = pickle.load(savefile)
savefile.close()
else:
dialect = csv.excel
dialect.skipinitialspace = True
reader = csv.reader(open("../data/gcs.tsv", "r"), delimiter="|", dialect=dialect)
vxvs = []
es = []
zmaxs = []
for row in reader:
if row[0][0] == "#":
continue
thisra = row[0]
thisdec = row[1]
thisd = read_float(row[2]) / 1000.0
if thisd > 0.2:
continue
thisu = read_float(row[3])
thisv = read_float(row[4])
thisw = read_float(row[5])
thise = read_float(row[6])
thiszmax = read_float(row[7])
if thisd == -9999 or thisu == -9999 or thisv == -9999 or thisw == -9999:
continue
vxvs.append([hms_to_rad(thisra), dms_to_rad(thisdec), thisd, thisu, thisv, thisw])
es.append(thise)
zmaxs.append(thiszmax)
vxvv = nu.array(vxvs)
e = nu.array(es)
zmax = nu.array(zmaxs)
# Define potential
lp = LogarithmicHaloPotential(normalize=1.0)
pp = PowerSphericalPotential(normalize=1.0, alpha=-2.0)
ts = nu.linspace(0.0, 100.0, 10000)
myjr = nu.zeros(len(e))
myjp = nu.zeros(len(e))
mye = nu.zeros(len(e))
myzmax = nu.zeros(len(e))
for ii in range(len(e)):
# Integrate the orbit
o = Orbit(vxvv[ii, :], radec=True, uvw=True, vo=220.0, ro=8.0)
if rotcurve == "flat":
o.integrate(ts, lp)
mye[ii] = o.e()
myzmax[ii] = o.zmax() * 8.0
print e[ii], mye[ii], zmax[ii], myzmax[ii]
myjr[ii] = o.jr(lp)
else:
myjr[ii] = o.jr(pp)
myjp[ii] = o.jp()
# Save
savefile = open(savefilename, "wb")
pickle.dump(myjr, savefile)
pickle.dump(myjp, savefile)
pickle.dump(mye, savefile)
pickle.dump(myzmax, savefile)
pickle.dump(e, savefile)
pickle.dump(zmax, savefile)
savefile.close()
# plot
if rotcurve == "flat":
plot.bovy_print()
plot.bovy_plot(
nu.array([0.0, 1.0]),
nu.array([0.0, 1.0]),
"k-",
xlabel=r"$\mathrm{Holmberg\ et\ al.}\ e$",
ylabel=r"$\mathrm{galpy}\ e$",
)
plot.bovy_plot(e, mye, "k,", overplot=True)
plot.bovy_end_print("myee.png")
plot.bovy_print()
plot.bovy_plot(
nu.array([0.0, 2.5]),
nu.array([0.0, 2.5]),
"k-",
xlabel=r"$\mathrm{Holmberg\ et\ al.}\ z_{\mathrm{max}}$",
ylabel=r"$\mathrm{galpy}\ z_{\mathrm{max}}$",
)
plot.bovy_plot(zmax, myzmax, "k,", overplot=True)
plot.bovy_end_print("myzmaxzmax.png")
plot.bovy_print()
#.........这里部分代码省略.........