本文整理汇总了Python中feature_extractor.FeatureExtractor.close方法的典型用法代码示例。如果您正苦于以下问题:Python FeatureExtractor.close方法的具体用法?Python FeatureExtractor.close怎么用?Python FeatureExtractor.close使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类feature_extractor.FeatureExtractor
的用法示例。
在下文中一共展示了FeatureExtractor.close方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: PoSDBoS
# 需要导入模块: from feature_extractor import FeatureExtractor [as 别名]
# 或者: from feature_extractor.FeatureExtractor import close [as 别名]
class PoSDBoS(object):
def __init__(self, networkFile=None, demo=False, demoFile=None):
'''Main class for drowsiness detection
:param string networkFile: file name of the saved neural network (path: "/../../data/<networkFile>.nn")
'''
self.demo = demo
self.running = True
self.config = ConfigProvider()
self._initPoSDBoS()
self._initNeuralNetwork(networkFile)
self._initFeatureExtractor(demoFile)
self.dm = DrowsinessMonitor()
self.fileUtil = EEGTableFileUtil()
def _initPoSDBoS(self):
posdbosConfig = self.config.getPoSDBoSConfig()
self.drowsyMinCount = posdbosConfig.get("drowsyMinCount")
self.awakeMinCount = posdbosConfig.get("awakeMinCount")
self.classified = [0, 0]
self.curClass = 0
self.classCount = 0
self.found = 0
def _initNeuralNetwork(self, networkFile):
nnCreate = self.config.getNNInitConfig()
self.nn = NeuralNetwork()
if networkFile == None:
self.nn.createNew(**nnCreate)
else:
self.nn.load(networkFile)
def _initFeatureExtractor(self, demoFile):
self.demoFile = demoFile
collector = self._initDataCollector(self.demoFile)
self.fe = FeatureExtractor(collector)
self.inputQueue = self.fe.extractQueue
def _initDataCollector(self, demoFile):
collectorConfig = self.config.getCollectorConfig()
if self.demo:
return DummyDataCollector(demoFile, **collectorConfig)
else:
return EEGDataCollector(None, **collectorConfig)
def close(self):
self.running = False
def run(self):
fet = threading.Thread(target=self.fe.start)
fet.start()
dmt = threading.Thread(target=self.dm.run)
dmt.start()
features = []
total = 0
start = time.time()
c = []
while self.running and dmt.is_alive():
try:
#awake = 0, drowsy = 1
data = self.inputQueue.get(timeout=1)
features.append(data)
clazz = self.nn.activate(data, True)
c.append([clazz, clazz])
self.setStatus(clazz)
total += 1
except Empty:
print "needed %sms for %d windows" % (time.time() - start, total)
pass
except KeyboardInterrupt:
self.close()
except Exception as e:
print e.message
self.close()
#self.writeFeature(c)
self.fe.close()
self.dm.close()
dmt.join()
def setStatus(self, clazz):
self.classified[clazz] += 1
if self.curClass == clazz:
self.classCount += 1
else:
self.curClass = clazz
self.classCount = 0
info = "class %d row (%s)" % (clazz, str(self.classCount))
if clazz == 1 and self.classCount >= self.drowsyMinCount:
self.dm.setStatus(clazz, info)
self.found += 1
elif clazz == 0 and self.classCount >= self.awakeMinCount:
self.dm.setStatus(clazz, info)
def writeFeature(self, data):
filePath = scriptPath + "/../data/" + "classes.csv"
#filePath = scriptPath + "/../data/" + "drowsy_full_.csv"
header = ["clazz", "clazz2"]
#.........这里部分代码省略.........
示例2: PoSDBoS
# 需要导入模块: from feature_extractor import FeatureExtractor [as 别名]
# 或者: from feature_extractor.FeatureExtractor import close [as 别名]
class PoSDBoS(object):
def __init__(self, networkFile=None, demo=False, demoFile=None):
'''Main class for drowsiness detection
:param string networkFile: file name of the saved neural network (path: "/../../data/<networkFile>.nn")
'''
self.demo = demo
self.running = True
self.config = ConfigProvider()
self._initNeuralNetwork(networkFile)
self._initFeatureExtractor(demoFile)
self.dm = DrowsinessMonitor()
self.fileUtil = EEGTableFileUtil()
def _initNeuralNetwork(self, networkFile):
nn_conf = self.config.getNeuralNetworkConfig()
self.nn = NeuralNetwork()
if networkFile == None:
self.nn.createNew(nn_conf["nInputs"], nn_conf["nHiddenLayers"], nn_conf["nOutput"], nn_conf["bias"])
else:
self.nn.load(networkFile)
def _initFeatureExtractor(self, demoFile):
collector = self._initDataCollector(demoFile)
self.fe = FeatureExtractor(collector)
self.inputQueue = self.fe.extractQueue
def _initDataCollector(self, demoFile):
collectorConfig = self.config.getCollectorConfig()
if self.demo:
return DummyDataCollector(demoFile, **collectorConfig)
else:
return EEGDataCollector(None, **collectorConfig)
def close(self):
self.running = False
def run(self):
fet = threading.Thread(target=self.fe.start)
fet.start()
dmt = threading.Thread(target=self.dm.run)
dmt.start()
features = []
while self.running and dmt.is_alive():
try:
data = self.inputQueue.get(timeout=1)
features.append(data)
x = random.randint(1, 10)%2
y = random.randint(1, 10)%2
data = (x, y)
clazz = self.nn.activate(data)
info = "%d XOR %d is %d; queue: %d" % (x, y, clazz, self.inputQueue.qsize())
self.dm.setStatus(clazz, info)
#sleep(1)
except Empty:
pass
#if self.demo:
# self.close()
except KeyboardInterrupt:
self.close()
except Exception as e:
print e.message
self.close()
self.writeFeature(features)
self.fe.close()
self.dm.close()
dmt.join()
def writeFeature(self, data):
filePath = scriptPath + "/../data/" + "test.csv"
header = []
for field in ["F3", "F4", "F7", "F8"]:
for i in range(1, 5):
header.append("%s_%s" % (field ,str(i)))
self.fileUtil.writeFile(filePath, data, header)