当前位置: 首页>>代码示例>>Python>>正文


Python ModelEnsemble.perform_outcome_optimization方法代码示例

本文整理汇总了Python中expWorkbench.ModelEnsemble.perform_outcome_optimization方法的典型用法代码示例。如果您正苦于以下问题:Python ModelEnsemble.perform_outcome_optimization方法的具体用法?Python ModelEnsemble.perform_outcome_optimization怎么用?Python ModelEnsemble.perform_outcome_optimization使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在expWorkbench.ModelEnsemble的用法示例。


在下文中一共展示了ModelEnsemble.perform_outcome_optimization方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_optimization

# 需要导入模块: from expWorkbench import ModelEnsemble [as 别名]
# 或者: from expWorkbench.ModelEnsemble import perform_outcome_optimization [as 别名]
def test_optimization():
    ema_logging.log_to_stderr(ema_logging.INFO)
    
    model = FluModel(r'..\data', "fluCase")
    ensemble = ModelEnsemble()
    
    ensemble.set_model_structure(model)
    ensemble.parallel=True
#    ensemble.processes = 12
        
    stats, pop  = ensemble.perform_outcome_optimization(obj_function = obj_function_multi,
                                                    reporting_interval=10, 
                                                    weights=(MAXIMIZE, MAXIMIZE),
                                                    pop_size=100,
                                                    nr_of_generations=5,
                                                    crossover_rate=0.5,
                                                    mutation_rate=0.05)
    res = stats.hall_of_fame.keys
    
    x = [entry.values[0] for entry in res]
    y = [entry.values[1] for entry in res]
    
    print len(x), len(y)
    
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(x,y)
    ax.set_ylabel("deceased population")
    ax.set_xlabel("infected fraction")
    
    plt.show()
开发者ID:,项目名称:,代码行数:33,代码来源:

示例2: test_optimization

# 需要导入模块: from expWorkbench import ModelEnsemble [as 别名]
# 或者: from expWorkbench.ModelEnsemble import perform_outcome_optimization [as 别名]
def test_optimization():
    ema_logging.log_to_stderr(ema_logging.INFO)
    
    model = FluModel(r'..\data', "fluCase")
    ensemble = ModelEnsemble()
    
    ensemble.set_model_structure(model)
    ensemble.parallel=True
        
    stats, pop  = ensemble.perform_outcome_optimization(obj_function = obj_function_multi,
                                                    reporting_interval=100, 
                                                    weights=(MAXIMIZE, MAXIMIZE),
                                                    pop_size=100,
                                                    nr_of_generations=20,
                                                    crossover_rate=0.5,
                                                    mutation_rate=0.05,
                                                    caching=False)
    res = stats.hall_of_fame.keys
    
    print len(stats.tried_solutions.values())
开发者ID:bram32,项目名称:EMAworkbench,代码行数:22,代码来源:test_outcome_optimization.py

示例3: outcome_optimize

# 需要导入模块: from expWorkbench import ModelEnsemble [as 别名]
# 或者: from expWorkbench.ModelEnsemble import perform_outcome_optimization [as 别名]
def outcome_optimize():
    ema_logging.log_to_stderr(ema_logging.INFO)
 
    model = TestModel("", 'simpleModel') #instantiate the model
    ensemble = ModelEnsemble() #instantiate an ensemble
    ensemble.set_model_structure(model) #set the model on the ensemble
    policy = {"name": "test",
              "L1": 1,
              "L2": 1}
    ensemble.add_policy(policy)
    
    def obj_func(results):
        return results['y']        
    
    results = ensemble.perform_outcome_optimization(obj_function=obj_func, 
                                          minimax = 'minimize', 
                                          nrOfGenerations = 1000, 
                                          nrOfPopMembers = 10)

    graph_errorbars_raw(results['stats'])
    plt.show()
开发者ID:,项目名称:,代码行数:23,代码来源:

示例4: test_optimization

# 需要导入模块: from expWorkbench import ModelEnsemble [as 别名]
# 或者: from expWorkbench.ModelEnsemble import perform_outcome_optimization [as 别名]
def test_optimization():
    ema_logging.log_to_stderr(ema_logging.INFO)
    
    model = FluModel(r'../models', "fluCase")
    ensemble = ModelEnsemble()
    
    ensemble.set_model_structure(model)
    ensemble.parallel=True
    
    pop_size = 8
    nr_of_generations = 10
    eps = np.array([1e-3, 1e6])

    stats, pop  = ensemble.perform_outcome_optimization(obj_function = obj_function_multi,
                                                    algorithm=epsNSGA2,
                                                    reporting_interval=100, 
                                                    weights=(MAXIMIZE, MAXIMIZE),
                                                    pop_size=pop_size,          
                                                    nr_of_generations=nr_of_generations,
                                                    crossover_rate=0.8,
                                                    mutation_rate=0.05,
                                                    eps=eps)
    fn = '../data/test optimization save.bz2'
开发者ID:epruyt,项目名称:EMAworkbench,代码行数:25,代码来源:test_outcome_optimization.py


注:本文中的expWorkbench.ModelEnsemble.perform_outcome_optimization方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。