当前位置: 首页>>代码示例>>Python>>正文


Python ModelEnsemble.perform_experiments方法代码示例

本文整理汇总了Python中expWorkbench.ModelEnsemble.perform_experiments方法的典型用法代码示例。如果您正苦于以下问题:Python ModelEnsemble.perform_experiments方法的具体用法?Python ModelEnsemble.perform_experiments怎么用?Python ModelEnsemble.perform_experiments使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在expWorkbench.ModelEnsemble的用法示例。


在下文中一共展示了ModelEnsemble.perform_experiments方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: transition_test

# 需要导入模块: from expWorkbench import ModelEnsemble [as 别名]
# 或者: from expWorkbench.ModelEnsemble import perform_experiments [as 别名]
def transition_test():

    model = EnergyTrans(r"..\..\..\models\EnergyTrans", "fluCase")
    ensemble = ModelEnsemble()
    ensemble.set_model_structure(model)

    ensemble.perform_experiments(cases=10, callback=HDF5Callback)
开发者ID:rahalim,项目名称:EMAworkbench,代码行数:9,代码来源:pytable_test.py

示例2: flu_test

# 需要导入模块: from expWorkbench import ModelEnsemble [as 别名]
# 或者: from expWorkbench.ModelEnsemble import perform_experiments [as 别名]
def flu_test():

    model = FluModel(r"..\..\..\models\flu", "fluCase")
    ensemble = ModelEnsemble()
    ensemble.set_model_structure(model)

    ensemble.perform_experiments(cases=10, callback=HDF5Callback)
开发者ID:rahalim,项目名称:EMAworkbench,代码行数:9,代码来源:pytable_test.py

示例3: test_inspect

# 需要导入模块: from expWorkbench import ModelEnsemble [as 别名]
# 或者: from expWorkbench.ModelEnsemble import perform_experiments [as 别名]
def test_inspect():
    import inspect_test
    model = FluModel(r'..\..\..\models\flu', "fluCase")
    ensemble = ModelEnsemble()
    ensemble.set_model_structure(model)
    
    ensemble.perform_experiments(cases = 10,
                                 callback=inspect_test.InspectCallback)
开发者ID:,项目名称:,代码行数:10,代码来源:

示例4: test_save_results

# 需要导入模块: from expWorkbench import ModelEnsemble [as 别名]
# 或者: from expWorkbench.ModelEnsemble import perform_experiments [as 别名]
def test_save_results():
    os.remove("test.h5")

    nrOfExperiments = 10
    fileName = "test.h5"
    experimentName = "one_exp_test"

    ensemble = ModelEnsemble()
    ensemble.set_model_structure(FluModel(r"..\..\..\models\flu", "fluCase"))

    ensemble.perform_experiments(
        nrOfExperiments, callback=HDF5Callback, fileName=fileName, experimentName=experimentName
    )
开发者ID:rahalim,项目名称:EMAworkbench,代码行数:15,代码来源:pytable_test.py

示例5: test_running_lookup_uncertainties

# 需要导入模块: from expWorkbench import ModelEnsemble [as 别名]
# 或者: from expWorkbench.ModelEnsemble import perform_experiments [as 别名]
 def test_running_lookup_uncertainties(self):
     '''
     This is the more comprehensive test, given that the lookup
     uncertainty replaces itself with a bunch of other uncertainties, check
     whether we can successfully run a set of experiments and get results
     back. We assert that the uncertainties are correctly replaced by
     analyzing the experiments array. 
     
     '''
     model = LookupTestModel( r'../models/', 'lookupTestModel')
     
     #model.step = 4 #reduce data to be stored
     ensemble = ModelEnsemble()
     ensemble.set_model_structure(model)
     
     ensemble.perform_experiments(10)
开发者ID:epruyt,项目名称:EMAworkbench,代码行数:18,代码来源:test_vensim.py

示例6: perform_experiments

# 需要导入模块: from expWorkbench import ModelEnsemble [as 别名]
# 或者: from expWorkbench.ModelEnsemble import perform_experiments [as 别名]
def perform_experiments():
    ema_logging.log_to_stderr(level=ema_logging.INFO)
    model = SalinizationModel(r"C:\workspace\EMA-workbench\models\salinization", "verzilting")
    model.step = 4
    
    ensemble = ModelEnsemble()
    ensemble.set_model_structure(model)
    
    ensemble.parallel = True
    nr_of_experiments = 10000
    results = ensemble.perform_experiments(nr_of_experiments)
    return results
开发者ID:canerhamarat,项目名称:EMAworkbench,代码行数:14,代码来源:salinization_example.py

示例7: test_multiple_models

# 需要导入模块: from expWorkbench import ModelEnsemble [as 别名]
# 或者: from expWorkbench.ModelEnsemble import perform_experiments [as 别名]
def test_multiple_models():
    class Model1(ModelStructureInterface):
        uncertainties = [ParameterUncertainty((0,1),"a"),
                         ParameterUncertainty((0,1),"b")]
        
        outcomes = [Outcome("test")]
        
        def model_init(self, policy, kwargs):
            pass
        
        def run_model(self, case):
            self.output['test'] = 1

    class Model2(ModelStructureInterface):
        uncertainties = [ParameterUncertainty((0,1),"b"),
                         ParameterUncertainty((0,1),"c")]
        
        outcomes = [Outcome("test")]
        
        def model_init(self, policy, kwargs):
            pass
        
        def run_model(self, case):
            self.output['test'] = 1
    
#    os.remove('test.h5')

    nrOfExperiments = 10
    fileName = 'test.h5'
    experimentName = "one_exp_test"
    
    ensemble = ModelEnsemble()
    ensemble.add_model_structure(Model1('', "test1"))
    ensemble.add_model_structure(Model2('', "test2"))
    
    ensemble.perform_experiments(nrOfExperiments,
                                 callback=HDF5Callback,
                                 fileName=fileName,
                                 experimentName=experimentName)
开发者ID:,项目名称:,代码行数:41,代码来源:

示例8: test_vensim_model

# 需要导入模块: from expWorkbench import ModelEnsemble [as 别名]
# 或者: from expWorkbench.ModelEnsemble import perform_experiments [as 别名]
 def test_vensim_model(self):
     #instantiate a model
     wd = r'../models'
     model = VensimExampleModel(wd, "simpleModel")
     
     #instantiate an ensemble
     ensemble = ModelEnsemble()
     
     #set the model on the ensemble
     ensemble.set_model_structure(model)
     
     nr_runs = 10
     experiments, outcomes = ensemble.perform_experiments(nr_runs)
     
     self.assertEqual(experiments.shape[0], nr_runs)
     self.assertIn('TIME', outcomes.keys())
     self.assertIn(model.outcomes[0].name, outcomes.keys())
开发者ID:epruyt,项目名称:EMAworkbench,代码行数:19,代码来源:test_vensim.py

示例9: test_tree

# 需要导入模块: from expWorkbench import ModelEnsemble [as 别名]
# 或者: from expWorkbench.ModelEnsemble import perform_experiments [as 别名]
def test_tree():
    
    log_to_stderr(level= INFO)
        
    model = FluModel(r'..\..\models\flu', "fluCase")
    ensemble = ModelEnsemble()
    ensemble.parallel = True
    ensemble.set_model_structure(model)
    
    policies = [{'name': 'no policy',
                 'file': r'\FLUvensimV1basecase.vpm'},
                {'name': 'static policy',
                 'file': r'\FLUvensimV1static.vpm'},
                {'name': 'adaptive policy',
                 'file': r'\FLUvensimV1dynamic.vpm'}
                ]
    ensemble.add_policies(policies)
    
    results = ensemble.perform_experiments(10)
   
    a_tree = tree(results, classify)
开发者ID:bram32,项目名称:EMAworkbench,代码行数:23,代码来源:test_orange_functions.py

示例10: test_feature_selection

# 需要导入模块: from expWorkbench import ModelEnsemble [as 别名]
# 或者: from expWorkbench.ModelEnsemble import perform_experiments [as 别名]
def test_feature_selection():
    log_to_stderr(level= INFO)
        
    model = FluModel(r'..\..\models\flu', "fluCase")
    ensemble = ModelEnsemble()
    ensemble.parallel = True
    ensemble.set_model_structure(model)
    
    policies = [{'name': 'no policy',
                 'file': r'\FLUvensimV1basecase.vpm'},
                {'name': 'static policy',
                 'file': r'\FLUvensimV1static.vpm'},
                {'name': 'adaptive policy',
                 'file': r'\FLUvensimV1dynamic.vpm'}
                ]
    ensemble.add_policies(policies)
    
    results = ensemble.perform_experiments(5000)
   
    results = feature_selection(results, classify)
    for entry in results:
        print entry[0] +"\t" + str(entry[1])
开发者ID:bram32,项目名称:EMAworkbench,代码行数:24,代码来源:test_orange_functions.py

示例11: Outcome

# 需要导入模块: from expWorkbench import ModelEnsemble [as 别名]
# 或者: from expWorkbench.ModelEnsemble import perform_experiments [as 别名]
    ]

    outcomes = [
        Outcome("sheep", time=True),
        Outcome("wolves", time=True),
        Outcome("grass", time=True),  # TODO patches not working in reporting
    ]


if __name__ == "__main__":
    # turn on logging
    ema_logging.log_to_stderr(ema_logging.INFO)

    # instantiate a model
    vensimModel = PredatorPrey(r"..\..\models\predatorPreyNetlogo", "simpleModel")

    # instantiate an ensemble
    ensemble = ModelEnsemble()

    # set the model on the ensemble
    ensemble.set_model_structure(vensimModel)

    # run in parallel, if not set, FALSE is assumed
    ensemble.parallel = True

    # perform experiments
    results = ensemble.perform_experiments(100)

    plotting.lines(results, density=plotting.KDE)
    plt.show()
开发者ID:rahalim,项目名称:EMAworkbench,代码行数:32,代码来源:netlogo_example.py

示例12: ParameterUncertainty

# 需要导入模块: from expWorkbench import ModelEnsemble [as 别名]
# 或者: from expWorkbench.ModelEnsemble import perform_experiments [as 别名]
                             "susceptible to immune population delay time region 1"),
        ParameterUncertainty((0.5,2), 
                             "susceptible to immune population delay time region 2"),
        ParameterUncertainty((0.01, 5), 
                             "root contact rate region 1"),
        ParameterUncertainty((0.01, 5), 
                             "root contact ratio region 2"),
        ParameterUncertainty((0, 0.15), 
                             "infection ratio region 1"),
        ParameterUncertainty((0, 0.15), 
                             "infection rate region 2"),
        ParameterUncertainty((10, 100), 
                             "normal contact rate region 1"),
        ParameterUncertainty((10, 200), 
                             "normal contact rate region 2")]
                         
        
if __name__ == "__main__":
    ema_logging.log_to_stderr(ema_logging.INFO)
        
    model = FluModel(r'./models/flu', "fluCase")
    ensemble = ModelEnsemble()
    ensemble.set_model_structure(model)
    
    ensemble.parallel = True #turn on parallel processing

    nr_experiments = 1000
    results = ensemble.perform_experiments(nr_experiments)
    
    fh =  r'./data/{} flu cases no policy.tar.gz'.format(nr_experiments)
    save_results(results, fh)
开发者ID:epruyt,项目名称:EMAworkbench,代码行数:33,代码来源:flu_vensim_no_policy_example.py

示例13: return

# 需要导入模块: from expWorkbench import ModelEnsemble [as 别名]
# 或者: from expWorkbench.ModelEnsemble import perform_experiments [as 别名]
        susceptible_population_region_1 = susceptible_population_region_1_NEXT
        susceptible_population_region_2 = susceptible_population_region_2_NEXT
    
        immune_population_region_1 = immune_population_region_1_NEXT
        immune_population_region_2 = immune_population_region_2_NEXT
    
        deceased_population_region_1.append(deceased_population_region_1_NEXT)
        deceased_population_region_2.append(deceased_population_region_2_NEXT)
        
        #End of main code
    return (runTime, deceased_population_region_1) #, Max_infected, Max_time)

        
if __name__ == "__main__":
    import expWorkbench.ema_logging as logging
    np.random.seed(150) #set the seed for replication purposes
    logging.log_to_stderr(logging.INFO)
    
    fluModel = MexicanFlu(None, "mexicanFluExample")
    ensemble = ModelEnsemble()
    ensemble.parallel = True
    ensemble.set_model_structure(fluModel)
    
    nr_experiments = 500
    results = ensemble.perform_experiments(nr_experiments, reporting_interval=100)

    lines(results, outcomes_to_show="deceased_population_region_1", 
          show_envelope=True, density=KDE, titles=None, 
          experiments_to_show=np.arange(0, nr_experiments, 10)
          )
    plt.show()
开发者ID:canerhamarat,项目名称:EMAworkbench,代码行数:33,代码来源:flu_example.py

示例14: SimplePythonModel

# 需要导入模块: from expWorkbench import ModelEnsemble [as 别名]
# 或者: from expWorkbench.ModelEnsemble import perform_experiments [as 别名]
class SimplePythonModel(ModelStructureInterface):
    """
    This class represents a simple example of how one can extent the basic
    ModelStructureInterface in order to do EMA on a simple model coded in
    Python directly
    """

    # specify uncertainties
    uncertainties = [
        ParameterUncertainty((0.1, 10), "x1"),
        ParameterUncertainty((-0.01, 0.01), "x2"),
        ParameterUncertainty((-0.01, 0.01), "x3"),
    ]

    # specify outcomes
    outcomes = [Outcome("y")]

    def model_init(self, policy, kwargs):
        pass

    def run_model(self, case):
        """Method for running an instantiated model structure """
        self.output[self.outcomes[0].name] = case["x1"] * case["x2"] + case["x3"]


if __name__ == "__main__":
    model = SimplePythonModel(None, "simpleModel")  # instantiate the model
    ensemble = ModelEnsemble()  # instantiate an ensemble
    ensemble.set_model_structure(model)  # set the model on the ensemble
    results = ensemble.perform_experiments(1000)  # generate 1000 cases
开发者ID:rahalim,项目名称:EMAworkbench,代码行数:32,代码来源:python_example.py


注:本文中的expWorkbench.ModelEnsemble.perform_experiments方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。