本文整理汇总了Python中ctapipe.visualization.CameraDisplay.image方法的典型用法代码示例。如果您正苦于以下问题:Python CameraDisplay.image方法的具体用法?Python CameraDisplay.image怎么用?Python CameraDisplay.image使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类ctapipe.visualization.CameraDisplay
的用法示例。
在下文中一共展示了CameraDisplay.image方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: draw_camera
# 需要导入模块: from ctapipe.visualization import CameraDisplay [as 别名]
# 或者: from ctapipe.visualization.CameraDisplay import image [as 别名]
def draw_camera(self, tel, data, axes=None):
"""
Draw a camera image using the correct geometry.
Parameters
----------
tel : int
The telescope you want drawn.
data : `np.array`
1D array with length equal to npix.
axes : `matplotlib.axes.Axes`
A matplotlib axes object to plot on, or None to create a new one.
Returns
-------
`ctapipe.visualization.CameraDisplay`
"""
geom = self.get_geometry(tel)
axes = axes if axes is not None else plt.gca()
camera = CameraDisplay(geom, ax=axes)
camera.image = data
camera.cmap = plt.cm.viridis
# camera.add_colorbar(ax=axes, label="Amplitude (ADC)")
# camera.set_limits_percent(95) # autoscale
return camera
示例2: display_event
# 需要导入模块: from ctapipe.visualization import CameraDisplay [as 别名]
# 或者: from ctapipe.visualization.CameraDisplay import image [as 别名]
def display_event(event, geoms):
"""an extremely inefficient display. It creates new instances of
CameraDisplay for every event and every camera, and also new axes
for each event. It's hacked, but it works
"""
print("Displaying... please wait (this is an inefficient implementation)")
global fig
ntels = len(event.r0.tels_with_data)
fig.clear()
plt.suptitle("EVENT {}".format(event.r0.event_id))
disps = []
for ii, tel_id in enumerate(event.r0.tels_with_data):
print("\t draw cam {}...".format(tel_id))
nn = int(ceil(sqrt(ntels)))
ax = plt.subplot(nn, nn, ii + 1)
x, y = event.inst.pixel_pos[tel_id]
geom = geoms[tel_id]
disp = CameraDisplay(geom, ax=ax, title="CT{0}".format(tel_id))
disp.pixels.set_antialiaseds(False)
disp.autoupdate = False
disp.cmap = 'afmhot'
chan = 0
signals = event.r0.tel[tel_id].adc_sums[chan].astype(float)
signals -= signals.mean()
disp.image = signals
disp.set_limits_percent(95)
disp.add_colorbar()
disps.append(disp)
return disps
示例3: draw_several_cams
# 需要导入模块: from ctapipe.visualization import CameraDisplay [as 别名]
# 或者: from ctapipe.visualization.CameraDisplay import image [as 别名]
def draw_several_cams(geom, ncams=4):
cmaps = ['jet', 'afmhot', 'terrain', 'autumn']
fig, axs = plt.subplots(
1, ncams, figsize=(15, 4),
)
for ii in range(ncams):
disp = CameraDisplay(
geom,
ax=axs[ii],
title="CT{}".format(ii + 1),
)
disp.cmap = cmaps[ii]
model = toymodel.generate_2d_shower_model(
centroid=(0.2 - ii * 0.1, -ii * 0.05),
width=0.05 + 0.001 * ii,
length=0.15 + 0.05 * ii,
psi=ii * 20 * u.deg,
)
image, sig, bg = toymodel.make_toymodel_shower_image(
geom,
model.pdf,
intensity=1500,
nsb_level_pe=5,
)
mask = tailcuts_clean(
geom,
image,
picture_thresh=6 * image.mean(),
boundary_thresh=4 * image.mean()
)
cleaned = image.copy()
cleaned[~mask] = 0
hillas = hillas_parameters(geom, cleaned)
disp.image = image
disp.add_colorbar(ax=axs[ii])
disp.set_limits_percent(95)
disp.overlay_moments(hillas, linewidth=3, color='blue')
示例4: start
# 需要导入模块: from ctapipe.visualization import CameraDisplay [as 别名]
# 或者: from ctapipe.visualization.CameraDisplay import image [as 别名]
def start(self):
geom = None
imsum = None
disp = None
for data in hessio_event_source(self.infile,
allowed_tels=self._selected_tels,
max_events=self.max_events):
self.calibrator.calibrate(data)
if geom is None:
x, y = data.inst.pixel_pos[self._base_tel]
flen = data.inst.optical_foclen[self._base_tel]
geom = CameraGeometry.guess(x, y, flen)
imsum = np.zeros(shape=x.shape, dtype=np.float)
disp = CameraDisplay(geom, title=geom.cam_id)
disp.add_colorbar()
disp.cmap = 'viridis'
if len(data.dl0.tels_with_data) <= 2:
continue
imsum[:] = 0
for telid in data.dl0.tels_with_data:
imsum += data.dl1.tel[telid].image[0]
self.log.info("event={} ntels={} energy={}" \
.format(data.r0.event_id,
len(data.dl0.tels_with_data),
data.mc.energy))
disp.image = imsum
plt.pause(0.1)
if self.output_suffix is not "":
filename = "{:020d}{}".format(data.r0.event_id,
self.output_suffix)
self.log.info("saving: '{}'".format(filename))
plt.savefig(filename)
示例5: start
# 需要导入模块: from ctapipe.visualization import CameraDisplay [as 别名]
# 或者: from ctapipe.visualization.CameraDisplay import image [as 别名]
def start(self):
geom = None
imsum = None
disp = None
for event in self.reader:
self.calibrator(event)
if geom is None:
geom = event.inst.subarray.tel[self._base_tel].camera
imsum = np.zeros(shape=geom.pix_x.shape, dtype=np.float)
disp = CameraDisplay(geom, title=geom.cam_id)
disp.add_colorbar()
disp.cmap = 'viridis'
if len(event.dl0.tels_with_data) <= 2:
continue
imsum[:] = 0
for telid in event.dl0.tels_with_data:
imsum += event.dl1.tel[telid].image[0]
self.log.info(
"event={} ntels={} energy={}".format(
event.r0.event_id, len(event.dl0.tels_with_data),
event.mc.energy
)
)
disp.image = imsum
plt.pause(0.1)
if self.output_suffix is not "":
filename = "{:020d}{}".format(
event.r0.event_id, self.output_suffix
)
self.log.info(f"saving: '{filename}'")
plt.savefig(filename)
示例6: start
# 需要导入模块: from ctapipe.visualization import CameraDisplay [as 别名]
# 或者: from ctapipe.visualization.CameraDisplay import image [as 别名]
def start(self):
disp = None
for event in tqdm(self.source,
desc='Tel{}'.format(self.tel),
total=self.reader.max_events,
disable=~self.progress):
self.log.debug(event.trig)
self.log.debug("Energy: {}".format(event.mc.energy))
self.calibrator.calibrate(event)
if disp is None:
x, y = event.inst.pixel_pos[self.tel]
focal_len = event.inst.optical_foclen[self.tel]
geom = CameraGeometry.guess(x, y, focal_len)
self.log.info(geom)
disp = CameraDisplay(geom)
# disp.enable_pixel_picker()
disp.add_colorbar()
if self.display:
plt.show(block=False)
# display the event
disp.axes.set_title('CT{:03d} ({}), event {:06d}'.format(
self.tel, geom.cam_id, event.r0.event_id)
)
if self.samples:
# display time-varying event
data = event.dl0.tel[self.tel].pe_samples[self.channel]
for ii in range(data.shape[1]):
disp.image = data[:, ii]
disp.set_limits_percent(70)
plt.suptitle("Sample {:03d}".format(ii))
if self.display:
plt.pause(self.delay)
if self.write:
plt.savefig('CT{:03d}_EV{:10d}_S{:02d}.png'
.format(self.tel, event.r0.event_id, ii))
else:
# display integrated event:
im = event.dl1.tel[self.tel].image[self.channel]
if self.clean:
mask = tailcuts_clean(geom, im, picture_thresh=10,
boundary_thresh=7)
im[~mask] = 0.0
disp.image = im
if self.hillas:
try:
ellipses = disp.axes.findobj(Ellipse)
if len(ellipses) > 0:
ellipses[0].remove()
params = hillas_parameters(pix_x=geom.pix_x,
pix_y=geom.pix_y, image=im)
disp.overlay_moments(params, color='pink', lw=3,
with_label=False)
except HillasParameterizationError:
pass
if self.display:
plt.pause(self.delay)
if self.write:
plt.savefig('CT{:03d}_EV{:010d}.png'
.format(self.tel, event.r0.event_id))
self.log.info("FINISHED READING DATA FILE")
if disp is None:
self.log.warning('No events for tel {} were found in {}. Try a '
'different EventIO file or another telescope'
.format(self.tel, self.infile),
)
pass
示例7: tailcuts_clean
# 需要导入模块: from ctapipe.visualization import CameraDisplay [as 别名]
# 或者: from ctapipe.visualization.CameraDisplay import image [as 别名]
psi='35d')
image, sig, bg = toymodel.make_toymodel_shower_image(geom, model.pdf,
intensity=50,
nsb_level_pe=1000)
# Apply image cleaning
cleanmask = tailcuts_clean(geom, image, picture_thresh=200,
boundary_thresh=100)
clean = image.copy()
clean[~cleanmask] = 0.0
# Calculate image parameters
hillas = hillas_parameters(geom.pix_x, geom.pix_y, clean)
print(hillas)
# Show the camera image and overlay Hillas ellipse and clean pixels
disp.image = image
disp.cmap = 'PuOr'
disp.highlight_pixels(cleanmask, color='black')
disp.overlay_moments(hillas, color='cyan', linewidth=3)
# Draw the neighbors of pixel 100 in red, and the neighbor-neighbors in
# green
for ii in geom.neighbors[130]:
draw_neighbors(geom, ii, color='green')
draw_neighbors(geom, 130, color='cyan', lw=2)
plt.show()
示例8: plot
# 需要导入模块: from ctapipe.visualization import CameraDisplay [as 别名]
# 或者: from ctapipe.visualization.CameraDisplay import image [as 别名]
def plot(self, input_file, event, telid, chan, extractor_name, nei):
# Extract required images
dl0 = event.dl0.tel[telid].adc_samples[chan]
t_pe = event.mc.tel[telid].photo_electron_image
dl1 = event.dl1.tel[telid].image[chan]
max_time = np.unravel_index(np.argmax(dl0), dl0.shape)[1]
max_charges = np.max(dl0, axis=1)
max_pix = int(np.argmax(max_charges))
min_pix = int(np.argmin(max_charges))
geom = CameraGeometry.guess(*event.inst.pixel_pos[telid],
event.inst.optical_foclen[telid])
# Get Neighbours
max_pixel_nei = nei[max_pix]
min_pixel_nei = nei[min_pix]
# Get Windows
windows = event.dl1.tel[telid].extracted_samples[chan]
length = np.sum(windows, axis=1)
start = np.argmax(windows, axis=1)
end = start + length
# Draw figures
ax_max_nei = {}
ax_min_nei = {}
fig_waveforms = plt.figure(figsize=(18, 9))
fig_waveforms.subplots_adjust(hspace=.5)
fig_camera = plt.figure(figsize=(15, 12))
ax_max_pix = fig_waveforms.add_subplot(4, 2, 1)
ax_min_pix = fig_waveforms.add_subplot(4, 2, 2)
ax_max_nei[0] = fig_waveforms.add_subplot(4, 2, 3)
ax_min_nei[0] = fig_waveforms.add_subplot(4, 2, 4)
ax_max_nei[1] = fig_waveforms.add_subplot(4, 2, 5)
ax_min_nei[1] = fig_waveforms.add_subplot(4, 2, 6)
ax_max_nei[2] = fig_waveforms.add_subplot(4, 2, 7)
ax_min_nei[2] = fig_waveforms.add_subplot(4, 2, 8)
ax_img_nei = fig_camera.add_subplot(2, 2, 1)
ax_img_max = fig_camera.add_subplot(2, 2, 2)
ax_img_true = fig_camera.add_subplot(2, 2, 3)
ax_img_cal = fig_camera.add_subplot(2, 2, 4)
# Draw max pixel traces
ax_max_pix.plot(dl0[max_pix])
ax_max_pix.set_xlabel("Time (ns)")
ax_max_pix.set_ylabel("DL0 Samples (ADC)")
ax_max_pix.set_title("(Max) Pixel: {}, True: {}, Measured = {:.3f}"
.format(max_pix, t_pe[max_pix], dl1[max_pix]))
max_ylim = ax_max_pix.get_ylim()
ax_max_pix.plot([start[max_pix], start[max_pix]],
ax_max_pix.get_ylim(), color='r', alpha=1)
ax_max_pix.plot([end[max_pix], end[max_pix]],
ax_max_pix.get_ylim(), color='r', alpha=1)
for i, ax in ax_max_nei.items():
if len(max_pixel_nei) > i:
pix = max_pixel_nei[i]
ax.plot(dl0[pix])
ax.set_xlabel("Time (ns)")
ax.set_ylabel("DL0 Samples (ADC)")
ax.set_title("(Max Nei) Pixel: {}, True: {}, Measured = {:.3f}"
.format(pix, t_pe[pix], dl1[pix]))
ax.set_ylim(max_ylim)
ax.plot([start[pix], start[pix]],
ax.get_ylim(), color='r', alpha=1)
ax.plot([end[pix], end[pix]],
ax.get_ylim(), color='r', alpha=1)
# Draw min pixel traces
ax_min_pix.plot(dl0[min_pix])
ax_min_pix.set_xlabel("Time (ns)")
ax_min_pix.set_ylabel("DL0 Samples (ADC)")
ax_min_pix.set_title("(Min) Pixel: {}, True: {}, Measured = {:.3f}"
.format(min_pix, t_pe[min_pix], dl1[min_pix]))
ax_min_pix.set_ylim(max_ylim)
ax_min_pix.plot([start[min_pix], start[min_pix]],
ax_min_pix.get_ylim(), color='r', alpha=1)
ax_min_pix.plot([end[min_pix], end[min_pix]],
ax_min_pix.get_ylim(), color='r', alpha=1)
for i, ax in ax_min_nei.items():
if len(min_pixel_nei) > i:
pix = min_pixel_nei[i]
ax.plot(dl0[pix])
ax.set_xlabel("Time (ns)")
ax.set_ylabel("DL0 Samples (ADC)")
ax.set_title("(Min Nei) Pixel: {}, True: {}, Measured = {:.3f}"
.format(pix, t_pe[pix], dl1[pix]))
ax.set_ylim(max_ylim)
ax.plot([start[pix], start[pix]],
ax.get_ylim(), color='r', alpha=1)
ax.plot([end[pix], end[pix]],
ax.get_ylim(), color='r', alpha=1)
# Draw cameras
nei_camera = np.zeros_like(max_charges, dtype=np.int)
nei_camera[min_pixel_nei] = 2
nei_camera[min_pix] = 1
nei_camera[max_pixel_nei] = 3
nei_camera[max_pix] = 4
#.........这里部分代码省略.........
示例9: plot
# 需要导入模块: from ctapipe.visualization import CameraDisplay [as 别名]
# 或者: from ctapipe.visualization.CameraDisplay import image [as 别名]
def plot(event, telid, chan, extractor_name):
# Extract required images
dl0 = event.dl0.tel[telid].waveform[chan]
t_pe = event.mc.tel[telid].photo_electron_image
dl1 = event.dl1.tel[telid].image[chan]
max_time = np.unravel_index(np.argmax(dl0), dl0.shape)[1]
max_charges = np.max(dl0, axis=1)
max_pix = int(np.argmax(max_charges))
min_pix = int(np.argmin(max_charges))
geom = event.inst.subarray.tel[telid].camera
nei = geom.neighbors
# Get Neighbours
max_pixel_nei = nei[max_pix]
min_pixel_nei = nei[min_pix]
# Draw figures
ax_max_nei = {}
ax_min_nei = {}
fig_waveforms = plt.figure(figsize=(18, 9))
fig_waveforms.subplots_adjust(hspace=.5)
fig_camera = plt.figure(figsize=(15, 12))
ax_max_pix = fig_waveforms.add_subplot(4, 2, 1)
ax_min_pix = fig_waveforms.add_subplot(4, 2, 2)
ax_max_nei[0] = fig_waveforms.add_subplot(4, 2, 3)
ax_min_nei[0] = fig_waveforms.add_subplot(4, 2, 4)
ax_max_nei[1] = fig_waveforms.add_subplot(4, 2, 5)
ax_min_nei[1] = fig_waveforms.add_subplot(4, 2, 6)
ax_max_nei[2] = fig_waveforms.add_subplot(4, 2, 7)
ax_min_nei[2] = fig_waveforms.add_subplot(4, 2, 8)
ax_img_nei = fig_camera.add_subplot(2, 2, 1)
ax_img_max = fig_camera.add_subplot(2, 2, 2)
ax_img_true = fig_camera.add_subplot(2, 2, 3)
ax_img_cal = fig_camera.add_subplot(2, 2, 4)
# Draw max pixel traces
ax_max_pix.plot(dl0[max_pix])
ax_max_pix.set_xlabel("Time (ns)")
ax_max_pix.set_ylabel("DL0 Samples (ADC)")
ax_max_pix.set_title(
f'(Max) Pixel: {max_pix}, True: {t_pe[max_pix]}, '
f'Measured = {dl1[max_pix]:.3f}'
)
max_ylim = ax_max_pix.get_ylim()
for i, ax in ax_max_nei.items():
if len(max_pixel_nei) > i:
pix = max_pixel_nei[i]
ax.plot(dl0[pix])
ax.set_xlabel("Time (ns)")
ax.set_ylabel("DL0 Samples (ADC)")
ax.set_title(
"(Max Nei) Pixel: {}, True: {}, Measured = {:.3f}"
.format(pix, t_pe[pix], dl1[pix])
)
ax.set_ylim(max_ylim)
# Draw min pixel traces
ax_min_pix.plot(dl0[min_pix])
ax_min_pix.set_xlabel("Time (ns)")
ax_min_pix.set_ylabel("DL0 Samples (ADC)")
ax_min_pix.set_title(
f'(Min) Pixel: {min_pix}, True: {t_pe[min_pix]}, '
f'Measured = {dl1[min_pix]:.3f}'
)
ax_min_pix.set_ylim(max_ylim)
for i, ax in ax_min_nei.items():
if len(min_pixel_nei) > i:
pix = min_pixel_nei[i]
ax.plot(dl0[pix])
ax.set_xlabel("Time (ns)")
ax.set_ylabel("DL0 Samples (ADC)")
ax.set_title(
f'(Min Nei) Pixel: {pix}, True: {t_pe[pix]}, '
f'Measured = {dl1[pix]:.3f}'
)
ax.set_ylim(max_ylim)
# Draw cameras
nei_camera = np.zeros_like(max_charges, dtype=np.int)
nei_camera[min_pixel_nei] = 2
nei_camera[min_pix] = 1
nei_camera[max_pixel_nei] = 3
nei_camera[max_pix] = 4
camera = CameraDisplay(geom, ax=ax_img_nei)
camera.image = nei_camera
ax_img_nei.set_title("Neighbour Map")
ax_img_nei.annotate(
f"Pixel: {max_pix}",
xy=(geom.pix_x.value[max_pix], geom.pix_y.value[max_pix]),
xycoords='data',
xytext=(0.05, 0.98),
textcoords='axes fraction',
arrowprops=dict(facecolor='red', width=2, alpha=0.4),
horizontalalignment='left',
verticalalignment='top'
)
#.........这里部分代码省略.........