本文整理汇总了Python中ctapipe.visualization.CameraDisplay.cmap方法的典型用法代码示例。如果您正苦于以下问题:Python CameraDisplay.cmap方法的具体用法?Python CameraDisplay.cmap怎么用?Python CameraDisplay.cmap使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类ctapipe.visualization.CameraDisplay
的用法示例。
在下文中一共展示了CameraDisplay.cmap方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: transform_and_clean_hex_samples
# 需要导入模块: from ctapipe.visualization import CameraDisplay [as 别名]
# 或者: from ctapipe.visualization.CameraDisplay import cmap [as 别名]
def transform_and_clean_hex_samples(pmt_samples, cam_geom):
# rotate all samples in the image to a rectangular image
rot_geom, rot_samples = convert_geometry_1d_to_2d(
cam_geom, pmt_samples, cam_geom.cam_id)
print("rot samples.shape:", rot_samples.shape)
# rotate the samples back to hex image
unrot_geom, unrot_samples = convert_geometry_back(rot_geom, rot_samples,
cam_geom.cam_id)
global fig
global cb1, ax1
global cb2, ax2
global cb3, ax3
if fig is None:
fig = plt.figure(figsize=(10, 10))
else:
fig.delaxes(ax1)
fig.delaxes(ax2)
fig.delaxes(ax3)
cb1.remove()
cb2.remove()
cb3.remove()
ax1 = fig.add_subplot(221)
disp1 = CameraDisplay(rot_geom, image=np.sum(rot_samples, axis=-1), ax=ax1)
plt.gca().set_aspect('equal', adjustable='box')
plt.title("rotated image")
disp1.cmap = plt.cm.inferno
disp1.add_colorbar()
cb1 = disp1.colorbar
ax2 = fig.add_subplot(222)
disp2 = CameraDisplay(cam_geom, image=np.sum(pmt_samples, axis=-1), ax=ax2)
plt.gca().set_aspect('equal', adjustable='box')
plt.title("original image")
disp2.cmap = plt.cm.inferno
disp2.add_colorbar()
cb2 = disp2.colorbar
ax3 = fig.add_subplot(223)
disp3 = CameraDisplay(unrot_geom, image=np.sum(unrot_samples, axis=-1), ax=ax3)
plt.gca().set_aspect('equal', adjustable='box')
plt.title("de-rotated image")
disp3.cmap = plt.cm.inferno
disp3.add_colorbar()
cb3 = disp3.colorbar
plt.pause(.1)
response = input("press return to continue")
if response != "":
exit()
示例2: draw_camera
# 需要导入模块: from ctapipe.visualization import CameraDisplay [as 别名]
# 或者: from ctapipe.visualization.CameraDisplay import cmap [as 别名]
def draw_camera(self, tel, data, axes=None):
"""
Draw a camera image using the correct geometry.
Parameters
----------
tel : int
The telescope you want drawn.
data : `np.array`
1D array with length equal to npix.
axes : `matplotlib.axes.Axes`
A matplotlib axes object to plot on, or None to create a new one.
Returns
-------
`ctapipe.visualization.CameraDisplay`
"""
geom = self.get_geometry(tel)
axes = axes if axes is not None else plt.gca()
camera = CameraDisplay(geom, ax=axes)
camera.image = data
camera.cmap = plt.cm.viridis
# camera.add_colorbar(ax=axes, label="Amplitude (ADC)")
# camera.set_limits_percent(95) # autoscale
return camera
示例3: display_event
# 需要导入模块: from ctapipe.visualization import CameraDisplay [as 别名]
# 或者: from ctapipe.visualization.CameraDisplay import cmap [as 别名]
def display_event(event, geoms):
"""an extremely inefficient display. It creates new instances of
CameraDisplay for every event and every camera, and also new axes
for each event. It's hacked, but it works
"""
print("Displaying... please wait (this is an inefficient implementation)")
global fig
ntels = len(event.r0.tels_with_data)
fig.clear()
plt.suptitle("EVENT {}".format(event.r0.event_id))
disps = []
for ii, tel_id in enumerate(event.r0.tels_with_data):
print("\t draw cam {}...".format(tel_id))
nn = int(ceil(sqrt(ntels)))
ax = plt.subplot(nn, nn, ii + 1)
x, y = event.inst.pixel_pos[tel_id]
geom = geoms[tel_id]
disp = CameraDisplay(geom, ax=ax, title="CT{0}".format(tel_id))
disp.pixels.set_antialiaseds(False)
disp.autoupdate = False
disp.cmap = 'afmhot'
chan = 0
signals = event.r0.tel[tel_id].adc_sums[chan].astype(float)
signals -= signals.mean()
disp.image = signals
disp.set_limits_percent(95)
disp.add_colorbar()
disps.append(disp)
return disps
示例4: _display_camera_animation
# 需要导入模块: from ctapipe.visualization import CameraDisplay [as 别名]
# 或者: from ctapipe.visualization.CameraDisplay import cmap [as 别名]
def _display_camera_animation(self):
#plt.style.use("ggplot")
fig = plt.figure(num="ctapipe Camera Demo", figsize=(7, 7))
ax = plt.subplot(111)
# load the camera
geom = CameraGeometry.from_name(self.camera)
disp = CameraDisplay(geom, ax=ax, autoupdate=True, )
disp.cmap = plt.cm.terrain
def update(frame):
centroid = np.random.uniform(-0.5, 0.5, size=2)
width = np.random.uniform(0, 0.01)
length = np.random.uniform(0, 0.03) + width
angle = np.random.uniform(0, 360)
intens = np.random.exponential(2) * 50
model = toymodel.generate_2d_shower_model(centroid=centroid,
width=width,
length=length,
psi=angle * u.deg)
image, sig, bg = toymodel.make_toymodel_shower_image(geom, model.pdf,
intensity=intens,
nsb_level_pe=5000)
# alternate between cleaned and raw images
if self._counter == self.cleanframes:
plt.suptitle("Image Cleaning ON")
self.imclean = True
if self._counter == self.cleanframes*2:
plt.suptitle("Image Cleaning OFF")
self.imclean = False
self._counter = 0
if self.imclean:
cleanmask = tailcuts_clean(geom, image/80.0)
for ii in range(3):
dilate(geom, cleanmask)
image[cleanmask == 0] = 0 # zero noise pixels
self.log.debug("count = {}, image sum={} max={}"
.format(self._counter, image.sum(), image.max()))
disp.image = image
if self.autoscale:
disp.set_limits_percent(95)
else:
disp.set_limits_minmax(-100, 4000)
disp.axes.figure.canvas.draw()
self._counter += 1
return [ax,]
self.anim = FuncAnimation(fig, update, interval=self.delay,
blit=self.blit)
plt.show()
示例5: draw_several_cams
# 需要导入模块: from ctapipe.visualization import CameraDisplay [as 别名]
# 或者: from ctapipe.visualization.CameraDisplay import cmap [as 别名]
def draw_several_cams(geom, ncams=4):
cmaps = ['jet', 'afmhot', 'terrain', 'autumn']
fig, axs = plt.subplots(
1, ncams, figsize=(15, 4),
)
for ii in range(ncams):
disp = CameraDisplay(
geom,
ax=axs[ii],
title="CT{}".format(ii + 1),
)
disp.cmap = cmaps[ii]
model = toymodel.generate_2d_shower_model(
centroid=(0.2 - ii * 0.1, -ii * 0.05),
width=0.05 + 0.001 * ii,
length=0.15 + 0.05 * ii,
psi=ii * 20 * u.deg,
)
image, sig, bg = toymodel.make_toymodel_shower_image(
geom,
model.pdf,
intensity=1500,
nsb_level_pe=5,
)
mask = tailcuts_clean(
geom,
image,
picture_thresh=6 * image.mean(),
boundary_thresh=4 * image.mean()
)
cleaned = image.copy()
cleaned[~mask] = 0
hillas = hillas_parameters(geom, cleaned)
disp.image = image
disp.add_colorbar(ax=axs[ii])
disp.set_limits_percent(95)
disp.overlay_moments(hillas, linewidth=3, color='blue')
示例6: start
# 需要导入模块: from ctapipe.visualization import CameraDisplay [as 别名]
# 或者: from ctapipe.visualization.CameraDisplay import cmap [as 别名]
def start(self):
geom = None
imsum = None
disp = None
for data in hessio_event_source(self.infile,
allowed_tels=self._selected_tels,
max_events=self.max_events):
self.calibrator.calibrate(data)
if geom is None:
x, y = data.inst.pixel_pos[self._base_tel]
flen = data.inst.optical_foclen[self._base_tel]
geom = CameraGeometry.guess(x, y, flen)
imsum = np.zeros(shape=x.shape, dtype=np.float)
disp = CameraDisplay(geom, title=geom.cam_id)
disp.add_colorbar()
disp.cmap = 'viridis'
if len(data.dl0.tels_with_data) <= 2:
continue
imsum[:] = 0
for telid in data.dl0.tels_with_data:
imsum += data.dl1.tel[telid].image[0]
self.log.info("event={} ntels={} energy={}" \
.format(data.r0.event_id,
len(data.dl0.tels_with_data),
data.mc.energy))
disp.image = imsum
plt.pause(0.1)
if self.output_suffix is not "":
filename = "{:020d}{}".format(data.r0.event_id,
self.output_suffix)
self.log.info("saving: '{}'".format(filename))
plt.savefig(filename)
示例7: start
# 需要导入模块: from ctapipe.visualization import CameraDisplay [as 别名]
# 或者: from ctapipe.visualization.CameraDisplay import cmap [as 别名]
def start(self):
geom = None
imsum = None
disp = None
for event in self.reader:
self.calibrator(event)
if geom is None:
geom = event.inst.subarray.tel[self._base_tel].camera
imsum = np.zeros(shape=geom.pix_x.shape, dtype=np.float)
disp = CameraDisplay(geom, title=geom.cam_id)
disp.add_colorbar()
disp.cmap = 'viridis'
if len(event.dl0.tels_with_data) <= 2:
continue
imsum[:] = 0
for telid in event.dl0.tels_with_data:
imsum += event.dl1.tel[telid].image[0]
self.log.info(
"event={} ntels={} energy={}".format(
event.r0.event_id, len(event.dl0.tels_with_data),
event.mc.energy
)
)
disp.image = imsum
plt.pause(0.1)
if self.output_suffix is not "":
filename = "{:020d}{}".format(
event.r0.event_id, self.output_suffix
)
self.log.info(f"saving: '{filename}'")
plt.savefig(filename)
示例8: tailcuts_clean
# 需要导入模块: from ctapipe.visualization import CameraDisplay [as 别名]
# 或者: from ctapipe.visualization.CameraDisplay import cmap [as 别名]
psi='35d')
image, sig, bg = toymodel.make_toymodel_shower_image(geom, model.pdf,
intensity=50,
nsb_level_pe=1000)
# Apply image cleaning
cleanmask = tailcuts_clean(geom, image, picture_thresh=200,
boundary_thresh=100)
clean = image.copy()
clean[~cleanmask] = 0.0
# Calculate image parameters
hillas = hillas_parameters(geom.pix_x, geom.pix_y, clean)
print(hillas)
# Show the camera image and overlay Hillas ellipse and clean pixels
disp.image = image
disp.cmap = 'PuOr'
disp.highlight_pixels(cleanmask, color='black')
disp.overlay_moments(hillas, color='cyan', linewidth=3)
# Draw the neighbors of pixel 100 in red, and the neighbor-neighbors in
# green
for ii in geom.neighbors[130]:
draw_neighbors(geom, ii, color='green')
draw_neighbors(geom, 130, color='cyan', lw=2)
plt.show()
示例9: CameraDisplay
# 需要导入模块: from ctapipe.visualization import CameraDisplay [as 别名]
# 或者: from ctapipe.visualization.CameraDisplay import cmap [as 别名]
if __name__ == '__main__':
plt.style.use("ggplot")
fig, ax = plt.subplots()
# load the camera
tel = TelescopeDescription.from_name("SST-1M", "DigiCam")
geom = tel.camera
fov = 0.3
maxwid = 0.05
maxlen = 0.1
disp = CameraDisplay(geom, ax=ax)
disp.cmap = 'inferno'
disp.add_colorbar(ax=ax)
def update(frame):
x, y = np.random.uniform(-fov, fov, size=2)
width = np.random.uniform(0.01, maxwid)
length = np.random.uniform(width, maxlen)
angle = np.random.uniform(0, 180)
intens = width * length * (5e4 + 1e5 * np.random.exponential(2))
model = toymodel.Gaussian(
x=x * u.m,
y=y * u.m,
width=width * u.m,
length=length * u.m,
psi=angle * u.deg,
示例10: _display_camera_animation
# 需要导入模块: from ctapipe.visualization import CameraDisplay [as 别名]
# 或者: from ctapipe.visualization.CameraDisplay import cmap [as 别名]
def _display_camera_animation(self):
# plt.style.use("ggplot")
fig = plt.figure(num="ctapipe Camera Demo", figsize=(7, 7))
ax = plt.subplot(111)
# load the camera
tel = TelescopeDescription.from_name(optics_name=self.optics,
camera_name=self.camera)
geom = tel.camera
# poor-man's coordinate transform from telscope to camera frame (it's
# better to use ctapipe.coordiantes when they are stable)
foclen = tel.optics.equivalent_focal_length.to(geom.pix_x.unit).value
fov = np.deg2rad(4.0)
scale = foclen
minwid = np.deg2rad(0.1)
maxwid = np.deg2rad(0.3)
maxlen = np.deg2rad(0.5)
self.log.debug("scale={} m, wid=({}-{})".format(scale, minwid, maxwid))
disp = CameraDisplay(
geom, ax=ax, autoupdate=True,
title="{}, f={}".format(tel, tel.optics.equivalent_focal_length)
)
disp.cmap = plt.cm.terrain
def update(frame):
centroid = np.random.uniform(-fov, fov, size=2) * scale
width = np.random.uniform(0, maxwid-minwid) * scale + minwid
length = np.random.uniform(0, maxlen) * scale + width
angle = np.random.uniform(0, 360)
intens = np.random.exponential(2) * 500
model = toymodel.generate_2d_shower_model(centroid=centroid,
width=width,
length=length,
psi=angle * u.deg)
self.log.debug(
"Frame=%d width=%03f length=%03f intens=%03d",
frame, width, length, intens
)
image, sig, bg = toymodel.make_toymodel_shower_image(
geom,
model.pdf,
intensity=intens,
nsb_level_pe=3,
)
# alternate between cleaned and raw images
if self._counter == self.cleanframes:
plt.suptitle("Image Cleaning ON")
self.imclean = True
if self._counter == self.cleanframes * 2:
plt.suptitle("Image Cleaning OFF")
self.imclean = False
self._counter = 0
disp.clear_overlays()
if self.imclean:
cleanmask = tailcuts_clean(geom, image,
picture_thresh=10.0,
boundary_thresh=5.0)
for ii in range(2):
dilate(geom, cleanmask)
image[cleanmask == 0] = 0 # zero noise pixels
try:
hillas = hillas_parameters(geom, image)
disp.overlay_moments(hillas, with_label=False,
color='red', alpha=0.7,
linewidth=2, linestyle='dashed')
except HillasParameterizationError:
disp.clear_overlays()
pass
self.log.debug("Frame=%d image_sum=%.3f max=%.3f",
self._counter, image.sum(), image.max())
disp.image = image
if self.autoscale:
disp.set_limits_percent(95)
else:
disp.set_limits_minmax(-5, 200)
disp.axes.figure.canvas.draw()
self._counter += 1
return [ax, ]
frames = None if self.num_events == 0 else self.num_events
repeat = True if self.num_events == 0 else False
self.log.info("Running for {} frames".format(frames))
self.anim = FuncAnimation(fig, update,
interval=self.delay,
frames=frames,
repeat=repeat,
blit=self.blit)
#.........这里部分代码省略.........
示例11: plot
# 需要导入模块: from ctapipe.visualization import CameraDisplay [as 别名]
# 或者: from ctapipe.visualization.CameraDisplay import cmap [as 别名]
#.........这里部分代码省略.........
# Draw min pixel traces
ax_min_pix.plot(dl0[min_pix])
ax_min_pix.set_xlabel("Time (ns)")
ax_min_pix.set_ylabel("DL0 Samples (ADC)")
ax_min_pix.set_title("(Min) Pixel: {}, True: {}, Measured = {:.3f}"
.format(min_pix, t_pe[min_pix], dl1[min_pix]))
ax_min_pix.set_ylim(max_ylim)
ax_min_pix.plot([start[min_pix], start[min_pix]],
ax_min_pix.get_ylim(), color='r', alpha=1)
ax_min_pix.plot([end[min_pix], end[min_pix]],
ax_min_pix.get_ylim(), color='r', alpha=1)
for i, ax in ax_min_nei.items():
if len(min_pixel_nei) > i:
pix = min_pixel_nei[i]
ax.plot(dl0[pix])
ax.set_xlabel("Time (ns)")
ax.set_ylabel("DL0 Samples (ADC)")
ax.set_title("(Min Nei) Pixel: {}, True: {}, Measured = {:.3f}"
.format(pix, t_pe[pix], dl1[pix]))
ax.set_ylim(max_ylim)
ax.plot([start[pix], start[pix]],
ax.get_ylim(), color='r', alpha=1)
ax.plot([end[pix], end[pix]],
ax.get_ylim(), color='r', alpha=1)
# Draw cameras
nei_camera = np.zeros_like(max_charges, dtype=np.int)
nei_camera[min_pixel_nei] = 2
nei_camera[min_pix] = 1
nei_camera[max_pixel_nei] = 3
nei_camera[max_pix] = 4
camera = CameraDisplay(geom, ax=ax_img_nei)
camera.image = nei_camera
camera.cmap = plt.cm.viridis
ax_img_nei.set_title("Neighbour Map")
ax_img_nei.annotate("Pixel: {}".format(max_pix),
xy=(geom.pix_x.value[max_pix],
geom.pix_y.value[max_pix]),
xycoords='data', xytext=(0.05, 0.98),
textcoords='axes fraction',
arrowprops=dict(facecolor='red', width=2,
alpha=0.4),
horizontalalignment='left',
verticalalignment='top')
ax_img_nei.annotate("Pixel: {}".format(min_pix),
xy=(geom.pix_x.value[min_pix],
geom.pix_y.value[min_pix]),
xycoords='data', xytext=(0.05, 0.94),
textcoords='axes fraction',
arrowprops=dict(facecolor='orange', width=2,
alpha=0.4),
horizontalalignment='left',
verticalalignment='top')
camera = CameraDisplay(geom, ax=ax_img_max)
camera.image = dl0[:, max_time]
camera.cmap = plt.cm.viridis
camera.add_colorbar(ax=ax_img_max, label="DL0 Samples (ADC)")
ax_img_max.set_title("Max Timeslice (T = {})".format(max_time))
ax_img_max.annotate("Pixel: {}".format(max_pix),
xy=(geom.pix_x.value[max_pix],
geom.pix_y.value[max_pix]),
xycoords='data', xytext=(0.05, 0.98),
textcoords='axes fraction',
arrowprops=dict(facecolor='red', width=2,
alpha=0.4),
horizontalalignment='left',
示例12: test_convert_geometry
# 需要导入模块: from ctapipe.visualization import CameraDisplay [as 别名]
# 或者: from ctapipe.visualization.CameraDisplay import cmap [as 别名]
def test_convert_geometry():
filename = get_path("gamma_test.simtel.gz")
cam_geom = {}
source = hessio_event_source(filename)
# testing a few images just for the sake of being thorough
counter = 5
for event in source:
for tel_id in event.dl0.tels_with_data:
if tel_id not in cam_geom:
cam_geom[tel_id] = CameraGeometry.guess(
event.inst.pixel_pos[tel_id][0],
event.inst.pixel_pos[tel_id][1],
event.inst.optical_foclen[tel_id])
# we want to test conversion of hex to rectangular pixel grid
if cam_geom[tel_id].pix_type is not "hexagonal":
continue
print(tel_id, cam_geom[tel_id].pix_type)
pmt_signal = apply_mc_calibration(
#event.dl0.tel[tel_id].adc_samples[0],
event.dl0.tel[tel_id].adc_sums[0],
event.mc.tel[tel_id].dc_to_pe[0],
event.mc.tel[tel_id].pedestal[0])
new_geom, new_signal = convert_geometry_1d_to_2d(
cam_geom[tel_id], pmt_signal, cam_geom[tel_id].cam_id, add_rot=-2)
unrot_geom, unrot_signal = convert_geometry_back(
new_geom, new_signal, cam_geom[tel_id].cam_id,
event.inst.optical_foclen[tel_id], add_rot=4)
# if run as main, do some plotting
if __name__ == "__main__":
fig = plt.figure()
plt.style.use('seaborn-talk')
ax1 = fig.add_subplot(131)
disp1 = CameraDisplay(cam_geom[tel_id],
image=np.sum(pmt_signal, axis=1)
if pmt_signal.shape[-1] == 25 else pmt_signal,
ax=ax1)
disp1.cmap = plt.cm.hot
disp1.add_colorbar()
plt.title("original geometry")
ax2 = fig.add_subplot(132)
disp2 = CameraDisplay(new_geom,
image=np.sum(new_signal, axis=2)
if new_signal.shape[-1] == 25 else new_signal,
ax=ax2)
disp2.cmap = plt.cm.hot
disp2.add_colorbar()
plt.title("slanted geometry")
ax3 = fig.add_subplot(133)
disp3 = CameraDisplay(unrot_geom, image=np.sum(unrot_signal, axis=1)
if unrot_signal.shape[-1] == 25 else unrot_signal,
ax=ax3)
disp3.cmap = plt.cm.hot
disp3.add_colorbar()
plt.title("geometry converted back to hex")
plt.show()
# do some tailcuts cleaning
mask1 = tailcuts_clean(cam_geom[tel_id], pmt_signal, 1,
picture_thresh=10.,
boundary_thresh=5.)
mask2 = tailcuts_clean(unrot_geom, unrot_signal, 1,
picture_thresh=10.,
boundary_thresh=5.)
pmt_signal[mask1==False] = 0
unrot_signal[mask2==False] = 0
'''
testing back and forth conversion on hillas parameters... '''
try:
moments1 = hillas_parameters(cam_geom[tel_id].pix_x,
cam_geom[tel_id].pix_y,
pmt_signal)
moments2 = hillas_parameters(unrot_geom.pix_x,
unrot_geom.pix_y,
unrot_signal)
except (HillasParameterizationError, AssertionError) as e:
'''
we don't want this test to fail because the hillas code
threw an error '''
print(e)
counter -= 1
#.........这里部分代码省略.........
示例13: print
# 需要导入模块: from ctapipe.visualization import CameraDisplay [as 别名]
# 或者: from ctapipe.visualization.CameraDisplay import cmap [as 别名]
fig, ax = plt.subplots()
# load the camera
tel = TelescopeDescription.from_name("SST-1M","DigiCam")
print(tel, tel.optics.effective_focal_length)
geom = tel.camera
# poor-man's coordinate transform from telscope to camera frame (it's
# better to use ctapipe.coordiantes when they are stable)
scale = tel.optics.effective_focal_length.to(geom.pix_x.unit).value
fov = np.deg2rad(4.0)
maxwid = np.deg2rad(0.01)
maxlen = np.deg2rad(0.03)
disp = CameraDisplay(geom, ax=ax)
disp.cmap = plt.cm.terrain
disp.add_colorbar(ax=ax)
def update(frame):
centroid = np.random.uniform(-fov, fov, size=2) * scale
width = np.random.uniform(0, maxwid) * scale
length = np.random.uniform(0, maxlen) * scale + width
angle = np.random.uniform(0, 360)
intens = np.random.exponential(2) * 50
model = toymodel.generate_2d_shower_model(
centroid=centroid,
width=width,
length=length,
psi=angle * u.deg,
)
image, sig, bg = toymodel.make_toymodel_shower_image(
示例14: transform_and_clean_hex_image
# 需要导入模块: from ctapipe.visualization import CameraDisplay [as 别名]
# 或者: from ctapipe.visualization.CameraDisplay import cmap [as 别名]
def transform_and_clean_hex_image(pmt_signal, cam_geom, photo_electrons):
start_time = time.time()
colors = cm.inferno(pmt_signal/max(pmt_signal))
new_geom, new_signal = convert_geometry_1d_to_2d(
cam_geom, pmt_signal, cam_geom.cam_id)
print("rot_signal", np.count_nonzero(np.isnan(new_signal)))
square_mask = new_geom.mask
cleaned_img = wavelet_transform(new_signal,
raw_option_string=args.raw)
unrot_img = cleaned_img[square_mask]
unrot_colors = cm.inferno(unrot_img/max(unrot_img))
cleaned_img_ik = kill_isolpix(cleaned_img, threshold=.5)
unrot_img_ik = cleaned_img_ik[square_mask]
unrot_colors_ik = cm.inferno(unrot_img_ik/max(unrot_img_ik))
square_image_add_noise = np.copy(new_signal)
square_image_add_noise[~square_mask] = \
np.random.normal(0.13, 5.77, np.count_nonzero(~square_mask))
square_image_add_noise_cleaned = wavelet_transform(square_image_add_noise,
raw_option_string=args.raw)
square_image_add_noise_cleaned_ik = kill_isolpix(square_image_add_noise_cleaned,
threshold=1.5)
unrot_geom, unrot_noised_signal = convert_geometry_back(
new_geom, square_image_add_noise_cleaned_ik, cam_geom.cam_id)
end_time = time.time()
print(end_time - start_time)
global fig
global cb1, ax1
global cb2, ax2
global cb3, ax3
global cb4, ax4
global cb5, ax5
global cb6, ax6
global cb7, ax7
global cb8, ax8
global cb9, ax9
if fig is None:
fig = plt.figure(figsize=(10, 10))
else:
fig.delaxes(ax1)
fig.delaxes(ax2)
fig.delaxes(ax3)
fig.delaxes(ax4)
fig.delaxes(ax5)
fig.delaxes(ax6)
fig.delaxes(ax7)
fig.delaxes(ax8)
fig.delaxes(ax9)
cb1.remove()
cb2.remove()
cb3.remove()
cb4.remove()
cb5.remove()
cb6.remove()
cb7.remove()
cb8.remove()
cb9.remove()
ax1 = fig.add_subplot(333)
disp1 = CameraDisplay(cam_geom, image=photo_electrons, ax=ax1)
plt.gca().set_aspect('equal', adjustable='box')
plt.title("photo-electron image")
disp1.cmap = plt.cm.inferno
disp1.add_colorbar()
cb1 = disp1.colorbar
ax2 = fig.add_subplot(336)
disp2 = CameraDisplay(cam_geom, image=pmt_signal, ax=ax2)
plt.gca().set_aspect('equal', adjustable='box')
disp2.cmap = plt.cm.inferno
disp2.add_colorbar()
cb2 = disp2.colorbar
plt.title("noisy image")
ax3 = fig.add_subplot(331)
plt.imshow(new_signal, interpolation='none', cmap=cm.inferno,
origin='lower')
plt.gca().set_aspect('equal', adjustable='box')
plt.title("noisy, slanted image")
cb3 = plt.colorbar()
ax4 = fig.add_subplot(334)
plt.imshow(cleaned_img, interpolation='none', cmap=cm.inferno,
origin='lower')
plt.gca().set_aspect('equal', adjustable='box')
plt.title("cleaned, slanted image, islands not killed")
cb4 = plt.colorbar()
ax4.set_axis_off()
#.........这里部分代码省略.........