当前位置: 首页>>代码示例>>Python>>正文


Python ParameterContext.dump方法代码示例

本文整理汇总了Python中coverage_model.parameter.ParameterContext.dump方法的典型用法代码示例。如果您正苦于以下问题:Python ParameterContext.dump方法的具体用法?Python ParameterContext.dump怎么用?Python ParameterContext.dump使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在coverage_model.parameter.ParameterContext的用法示例。


在下文中一共展示了ParameterContext.dump方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: build_param_contexts

# 需要导入模块: from coverage_model.parameter import ParameterContext [as 别名]
# 或者: from coverage_model.parameter.ParameterContext import dump [as 别名]
    def build_param_contexts(self):
        context_ids = []
        t_ctxt = ParameterContext('time', param_type=QuantityType(value_encoding=np.dtype('int64')))
        t_ctxt.uom = 'seconds since 01-01-1970'
        context_ids.append(self.dataset_management.create_parameter_context(name='time', parameter_context=t_ctxt.dump()))

        cnd_ctxt = ParameterContext('conductivity', param_type=ArrayType())
        cnd_ctxt.uom = 'mmho/cm'
        context_ids.append(self.dataset_management.create_parameter_context(name='conductivity', parameter_context=cnd_ctxt.dump()))

        temp_ctxt = ParameterContext('temperature', param_type=ArrayType())
        temp_ctxt.uom = 'degC'
        context_ids.append(self.dataset_management.create_parameter_context(name='temperature', parameter_context=temp_ctxt.dump()))

        press_ctxt = ParameterContext('pressure', param_type=ArrayType())
        press_ctxt.uom = 'decibars'
        context_ids.append(self.dataset_management.create_parameter_context(name='pressure', parameter_context=press_ctxt.dump()))

        oxy_ctxt = ParameterContext('oxygen', param_type=ArrayType())
        oxy_ctxt.uom = 'Hz'
        context_ids.append(self.dataset_management.create_parameter_context(name='oxygen', parameter_context=oxy_ctxt.dump()))

        return context_ids
开发者ID:jamie-cyber1,项目名称:coi-services,代码行数:25,代码来源:test_bulk_data_ingestion.py

示例2: test_dm_end_2_end

# 需要导入模块: from coverage_model.parameter import ParameterContext [as 别名]
# 或者: from coverage_model.parameter.ParameterContext import dump [as 别名]
    def test_dm_end_2_end(self):
        #--------------------------------------------------------------------------------
        # Set up a stream and have a mock instrument (producer) send data
        #--------------------------------------------------------------------------------
        self.event.clear()

        # Get a precompiled parameter dictionary with basic ctd fields
        pdict_id = self.dataset_management.read_parameter_dictionary_by_name('ctd_parsed_param_dict',id_only=True)
        context_ids = self.dataset_management.read_parameter_contexts(pdict_id, id_only=True)

        # Add a field that supports binary data input.
        bin_context = ParameterContext('binary',  param_type=ArrayType())
        context_ids.append(self.dataset_management.create_parameter_context('binary', bin_context.dump()))
        # Add another field that supports dictionary elements.
        rec_context = ParameterContext('records', param_type=RecordType())
        context_ids.append(self.dataset_management.create_parameter_context('records', rec_context.dump()))

        pdict_id = self.dataset_management.create_parameter_dictionary('replay_pdict', parameter_context_ids=context_ids, temporal_context='time')
        
        stream_definition = self.pubsub_management.create_stream_definition('ctd data', parameter_dictionary_id=pdict_id)


        stream_id, route = self.pubsub_management.create_stream('producer', exchange_point=self.exchange_point_name, stream_definition_id=stream_definition)

        #--------------------------------------------------------------------------------
        # Start persisting the data on the stream 
        # - Get the ingestion configuration from the resource registry
        # - Create the dataset
        # - call persist_data_stream to setup the subscription for the ingestion workers
        #   on the stream that you specify which causes the data to be persisted
        #--------------------------------------------------------------------------------

        ingest_config_id = self.get_ingestion_config()
        dataset_id = self.create_dataset(pdict_id)
        self.ingestion_management.persist_data_stream(stream_id=stream_id, ingestion_configuration_id=ingest_config_id, dataset_id=dataset_id)
        self.addCleanup(self.stop_ingestion, stream_id)

        #--------------------------------------------------------------------------------
        # Now the granules are ingesting and persisted
        #--------------------------------------------------------------------------------

        self.launch_producer(stream_id)
        self.wait_until_we_have_enough_granules(dataset_id,40)
        
        #--------------------------------------------------------------------------------
        # Now get the data in one chunk using an RPC Call to start_retreive
        #--------------------------------------------------------------------------------
        
        replay_data = self.data_retriever.retrieve(dataset_id)
        self.assertIsInstance(replay_data, Granule)
        rdt = RecordDictionaryTool.load_from_granule(replay_data)
        self.assertTrue((rdt['time'][:10] == np.arange(10)).all(),'%s' % rdt['time'][:])
        self.assertTrue((rdt['binary'][:10] == np.array(['hi']*10, dtype='object')).all())

        
        #--------------------------------------------------------------------------------
        # Now to try the streamed approach
        #--------------------------------------------------------------------------------
        replay_stream_id, replay_route = self.pubsub_management.create_stream('replay_out', exchange_point=self.exchange_point_name, stream_definition_id=stream_definition)
        self.replay_id, process_id =  self.data_retriever.define_replay(dataset_id=dataset_id, stream_id=replay_stream_id)
        log.info('Process ID: %s', process_id)

        replay_client = ReplayClient(process_id)

    
        #--------------------------------------------------------------------------------
        # Create the listening endpoint for the the retriever to talk to 
        #--------------------------------------------------------------------------------
        sub_id = self.pubsub_management.create_subscription(self.exchange_space_name,stream_ids=[replay_stream_id])
        self.addCleanup(self.pubsub_management.delete_subscription, sub_id)
        self.pubsub_management.activate_subscription(sub_id)
        self.addCleanup(self.pubsub_management.deactivate_subscription, sub_id)
        subscriber = StandaloneStreamSubscriber(self.exchange_space_name, self.validate_granule_subscription)
        subscriber.start()
        self.addCleanup(subscriber.stop)

        self.data_retriever.start_replay_agent(self.replay_id)

        self.assertTrue(replay_client.await_agent_ready(5), 'The process never launched')
        replay_client.start_replay()
        
        self.assertTrue(self.event.wait(10))

        self.data_retriever.cancel_replay_agent(self.replay_id)


        #--------------------------------------------------------------------------------
        # Test the slicing capabilities
        #--------------------------------------------------------------------------------

        granule = self.data_retriever.retrieve(dataset_id=dataset_id, query={'tdoa':slice(0,5)})
        rdt = RecordDictionaryTool.load_from_granule(granule)
        b = rdt['time'] == np.arange(5)
        self.assertTrue(b.all() if not isinstance(b,bool) else b)
开发者ID:ednad,项目名称:coi-services,代码行数:96,代码来源:test_dm_end_2_end.py

示例3: test_replay_with_parameters

# 需要导入模块: from coverage_model.parameter import ParameterContext [as 别名]
# 或者: from coverage_model.parameter.ParameterContext import dump [as 别名]
    def test_replay_with_parameters(self):
        #--------------------------------------------------------------------------------
        # Create the configurations and the dataset
        #--------------------------------------------------------------------------------
        # Get a precompiled parameter dictionary with basic ctd fields
        pdict_id = self.dataset_management.read_parameter_dictionary_by_name('ctd_parsed_param_dict',id_only=True)
        context_ids = self.dataset_management.read_parameter_contexts(pdict_id, id_only=True)

        # Add a field that supports binary data input.
        bin_context = ParameterContext('binary',  param_type=ArrayType())
        context_ids.append(self.dataset_management.create_parameter_context('binary', bin_context.dump()))
        # Add another field that supports dictionary elements.
        rec_context = ParameterContext('records', param_type=RecordType())
        context_ids.append(self.dataset_management.create_parameter_context('records', rec_context.dump()))

        pdict_id = self.dataset_management.create_parameter_dictionary('replay_pdict', parameter_context_ids=context_ids, temporal_context='time')
        

        stream_def_id = self.pubsub_management.create_stream_definition('replay_stream', parameter_dictionary_id=pdict_id)
        
        stream_id, route  = self.pubsub_management.create_stream('replay_with_params', exchange_point=self.exchange_point_name, stream_definition_id=stream_def_id)
        config_id  = self.get_ingestion_config()
        dataset_id = self.create_dataset(pdict_id)
        self.ingestion_management.persist_data_stream(stream_id=stream_id, ingestion_configuration_id=config_id, dataset_id=dataset_id)
        self.addCleanup(self.stop_ingestion, stream_id)

        dataset_monitor = DatasetMonitor(dataset_id)
        self.addCleanup(dataset_monitor.stop)

        self.publish_fake_data(stream_id, route)

        self.assertTrue(dataset_monitor.wait())

        query = {
            'start_time': 0 - 2208988800,
            'end_time':   19 - 2208988800,
            'stride_time' : 2,
            'parameters': ['time','temp']
        }
        retrieved_data = self.data_retriever.retrieve(dataset_id=dataset_id,query=query)

        rdt = RecordDictionaryTool.load_from_granule(retrieved_data)
        np.testing.assert_array_equal(rdt['time'], np.arange(0,20,2))
        self.assertEquals(set(rdt.iterkeys()), set(['time','temp']))

        extents = self.dataset_management.dataset_extents(dataset_id=dataset_id, parameters=['time','temp'])
        self.assertTrue(extents['time']>=20)
        self.assertTrue(extents['temp']>=20)
开发者ID:ednad,项目名称:coi-services,代码行数:50,代码来源:test_dm_end_2_end.py

示例4: test_replay_with_parameters

# 需要导入模块: from coverage_model.parameter import ParameterContext [as 别名]
# 或者: from coverage_model.parameter.ParameterContext import dump [as 别名]
    def test_replay_with_parameters(self):
        # --------------------------------------------------------------------------------
        # Create the configurations and the dataset
        # --------------------------------------------------------------------------------
        # Get a precompiled parameter dictionary with basic ctd fields
        pdict_id = self.dataset_management.read_parameter_dictionary_by_name("ctd_parsed_param_dict", id_only=True)
        context_ids = self.dataset_management.read_parameter_contexts(pdict_id, id_only=True)

        # Add a field that supports binary data input.
        bin_context = ParameterContext("binary", param_type=ArrayType())
        context_ids.append(self.dataset_management.create_parameter_context("binary", bin_context.dump()))
        # Add another field that supports dictionary elements.
        rec_context = ParameterContext("records", param_type=RecordType())
        context_ids.append(self.dataset_management.create_parameter_context("records", rec_context.dump()))

        pdict_id = self.dataset_management.create_parameter_dictionary(
            "replay_pdict", parameter_context_ids=context_ids, temporal_context="time"
        )

        stream_def_id = self.pubsub_management.create_stream_definition(
            "replay_stream", parameter_dictionary_id=pdict_id
        )

        stream_id, route = self.pubsub_management.create_stream(
            "replay_with_params", exchange_point=self.exchange_point_name, stream_definition_id=stream_def_id
        )
        config_id = self.get_ingestion_config()
        dataset_id = self.create_dataset(pdict_id)
        self.ingestion_management.persist_data_stream(
            stream_id=stream_id, ingestion_configuration_id=config_id, dataset_id=dataset_id
        )

        # --------------------------------------------------------------------------------
        # Coerce the datastore into existence (beats race condition)
        # --------------------------------------------------------------------------------
        self.get_datastore(dataset_id)

        self.launch_producer(stream_id)

        self.wait_until_we_have_enough_granules(dataset_id, 40)

        query = {
            "start_time": 0 - 2208988800,
            "end_time": 20 - 2208988800,
            "stride_time": 2,
            "parameters": ["time", "temp"],
        }
        retrieved_data = self.data_retriever.retrieve(dataset_id=dataset_id, query=query)

        rdt = RecordDictionaryTool.load_from_granule(retrieved_data)
        comp = np.arange(0, 20, 2) == rdt["time"]
        self.assertTrue(comp.all(), "%s" % rdt.pretty_print())
        self.assertEquals(set(rdt.iterkeys()), set(["time", "temp"]))

        extents = self.dataset_management.dataset_extents(dataset_id=dataset_id, parameters=["time", "temp"])
        self.assertTrue(extents["time"] >= 20)
        self.assertTrue(extents["temp"] >= 20)

        self.streams.append(stream_id)
        self.stop_ingestion(stream_id)
开发者ID:blazetopher,项目名称:coi-services,代码行数:62,代码来源:test_dm_end_2_end.py

示例5: test_replay_pause

# 需要导入模块: from coverage_model.parameter import ParameterContext [as 别名]
# 或者: from coverage_model.parameter.ParameterContext import dump [as 别名]
    def test_replay_pause(self):
        # Get a precompiled parameter dictionary with basic ctd fields
        pdict_id = self.dataset_management.read_parameter_dictionary_by_name('ctd_parsed_param_dict',id_only=True)
        context_ids = self.dataset_management.read_parameter_contexts(pdict_id, id_only=True)

        # Add a field that supports binary data input.
        bin_context = ParameterContext('binary',  param_type=ArrayType())
        context_ids.append(self.dataset_management.create_parameter_context('binary', bin_context.dump()))
        # Add another field that supports dictionary elements.
        rec_context = ParameterContext('records', param_type=RecordType())
        context_ids.append(self.dataset_management.create_parameter_context('records', rec_context.dump()))

        pdict_id = self.dataset_management.create_parameter_dictionary('replay_pdict', parameter_context_ids=context_ids, temporal_context='time')
        

        stream_def_id = self.pubsub_management.create_stream_definition('replay_stream', parameter_dictionary_id=pdict_id)
        replay_stream, replay_route = self.pubsub_management.create_stream('replay', 'xp1', stream_definition_id=stream_def_id)
        dataset_id = self.create_dataset(pdict_id)
        scov = DatasetManagementService._get_simplex_coverage(dataset_id)

        bb = CoverageCraft(scov)
        bb.rdt['time'] = np.arange(100)
        bb.rdt['temp'] = np.random.random(100) + 30
        bb.sync_with_granule()

        DatasetManagementService._persist_coverage(dataset_id, bb.coverage) # This invalidates it for multi-host configurations
        # Set up the subscriber to verify the data
        subscriber = StandaloneStreamSubscriber(self.exchange_space_name, self.validate_granule_subscription)
        xp = self.container.ex_manager.create_xp('xp1')
        self.queue_buffer.append(self.exchange_space_name)
        subscriber.start()
        subscriber.xn.bind(replay_route.routing_key, xp)

        # Set up the replay agent and the client wrapper

        # 1) Define the Replay (dataset and stream to publish on)
        self.replay_id, process_id = self.data_retriever.define_replay(dataset_id=dataset_id, stream_id=replay_stream)
        # 2) Make a client to the interact with the process (optionall provide it a process to bind with)
        replay_client = ReplayClient(process_id)
        # 3) Start the agent (launch the process)
        self.data_retriever.start_replay_agent(self.replay_id)
        # 4) Start replaying...
        replay_client.start_replay()
        
        # Wait till we get some granules
        self.assertTrue(self.event.wait(5))
        
        # We got granules, pause the replay, clear the queue and allow the process to finish consuming
        replay_client.pause_replay()
        gevent.sleep(1)
        subscriber.xn.purge()
        self.event.clear()
        
        # Make sure there's no remaining messages being consumed
        self.assertFalse(self.event.wait(1))

        # Resume the replay and wait until we start getting granules again
        replay_client.resume_replay()
        self.assertTrue(self.event.wait(5))
    
        # Stop the replay, clear the queues
        replay_client.stop_replay()
        gevent.sleep(1)
        subscriber.xn.purge()
        self.event.clear()

        # Make sure that it did indeed stop
        self.assertFalse(self.event.wait(1))

        subscriber.stop()
开发者ID:jamie-cyber1,项目名称:coi-services,代码行数:72,代码来源:test_dm_end_2_end.py

示例6: build_param_contexts

# 需要导入模块: from coverage_model.parameter import ParameterContext [as 别名]
# 或者: from coverage_model.parameter.ParameterContext import dump [as 别名]
    def build_param_contexts(self):
        context_ids = []
        t_ctxt = ParameterContext('Time_Time', param_type=QuantityType(value_encoding=np.dtype('int64')))
        t_ctxt.uom = 'seconds since 01-01-1970'
        context_ids.append(self.dataset_management.create_parameter_context(name='Time_Time', parameter_context=t_ctxt.dump()))

        core_current_ctxt = ParameterContext('Core_Current', param_type=QuantityType(value_encoding=np.dtype('float32')))
        core_current_ctxt.uom = 'unknown'
        context_ids.append(self.dataset_management.create_parameter_context(name='Core_Current', parameter_context=core_current_ctxt.dump()))

        core_voltage_ctxt = ParameterContext('Core_Voltage', param_type=QuantityType(value_encoding=np.dtype('float32')))
        core_voltage_ctxt.uom = 'unknown'
        context_ids.append(self.dataset_management.create_parameter_context(name='Core_Voltage', parameter_context=core_voltage_ctxt.dump()))

        core_pressure_ctxt = ParameterContext('Core_Pressure', param_type=QuantityType(value_encoding=np.dtype('float32')))
        core_pressure_ctxt.uom = 'unknown'
        context_ids.append(self.dataset_management.create_parameter_context(name='Core_Pressure', parameter_context=core_pressure_ctxt.dump()))

        fluorometer_value_ctxt = ParameterContext('Fluorometer_Value', param_type=QuantityType(value_encoding=np.dtype('float32')))
        fluorometer_value_ctxt.uom = 'unknown'
        context_ids.append(self.dataset_management.create_parameter_context(name='Fluorometer_Value', parameter_context=fluorometer_value_ctxt.dump()))

        fluorometer_gain_ctxt = ParameterContext('Fluorometer_Gain', param_type=QuantityType(value_encoding=np.dtype('int32')))
        fluorometer_gain_ctxt.uom = 'unknown'
        context_ids.append(self.dataset_management.create_parameter_context(name='Fluorometer_Gain', parameter_context=fluorometer_gain_ctxt.dump()))

        turbidity_value_ctxt = ParameterContext('Turbidity_Value', param_type=QuantityType(value_encoding=np.dtype('float32')))
        turbidity_value_ctxt.uom = 'unknown'
        context_ids.append(self.dataset_management.create_parameter_context(name='Turbidity_Value', parameter_context=turbidity_value_ctxt.dump()))

        turbidity_gain_ctxt = ParameterContext('Turbidity_Gain', param_type=QuantityType(value_encoding=np.dtype('int32')))
        turbidity_gain_ctxt.uom = 'unknown'
        context_ids.append(self.dataset_management.create_parameter_context(name='Turbidity_Gain', parameter_context=turbidity_gain_ctxt.dump()))

        optode_oxygen_ctxt = ParameterContext('Optode_Oxygen', param_type=QuantityType(value_encoding=np.dtype('float32')))
        optode_oxygen_ctxt.uom = 'unknown'
        context_ids.append(self.dataset_management.create_parameter_context(name='Optode_Oxygen', parameter_context=optode_oxygen_ctxt.dump()))

        optode_temp_ctxt = ParameterContext('Optode_Temp', param_type=QuantityType(value_encoding=np.dtype('float32')))
        optode_temp_ctxt.uom = 'unknown'
        context_ids.append(self.dataset_management.create_parameter_context(name='Optode_Temp', parameter_context=optode_temp_ctxt.dump()))

        par_value_ctxt = ParameterContext('Par_Value', param_type=QuantityType(value_encoding=np.dtype('float32')))
        par_value_ctxt.uom = 'unknown'
        context_ids.append(self.dataset_management.create_parameter_context(name='Par_Value', parameter_context=par_value_ctxt.dump()))

        puck_scatter_ctxt = ParameterContext('Puck_Scatter', param_type=QuantityType(value_encoding=np.dtype('int16')))
        puck_scatter_ctxt.uom = 'unknown'
        context_ids.append(self.dataset_management.create_parameter_context(name='Puck_Scatter', parameter_context=puck_scatter_ctxt.dump()))

        puck_chla_ctxt = ParameterContext('Puck_Chla', param_type=QuantityType(value_encoding=np.dtype('int16')))
        puck_chla_ctxt.uom = 'unknown'
        context_ids.append(self.dataset_management.create_parameter_context(name='Puck_Chla', parameter_context=puck_chla_ctxt.dump()))

        puck_cdom_ctxt = ParameterContext('Puck_CDOM', param_type=QuantityType(value_encoding=np.dtype('int16')))
        puck_cdom_ctxt.uom = 'unknown'
        context_ids.append(self.dataset_management.create_parameter_context(name='Puck_CDOM', parameter_context=puck_cdom_ctxt.dump()))

        biosuite_scatter_ctxt = ParameterContext('BioSuite_Scatter', param_type=QuantityType(value_encoding=np.dtype('int16')))
        biosuite_scatter_ctxt.uom = 'unknown'
        context_ids.append(self.dataset_management.create_parameter_context(name='BioSuite_Scatter', parameter_context=biosuite_scatter_ctxt.dump()))

        biosuite_chla_ctxt = ParameterContext('BioSuite_Chla', param_type=QuantityType(value_encoding=np.dtype('int16')))
        biosuite_chla_ctxt.uom = 'unknown'
        context_ids.append(self.dataset_management.create_parameter_context(name='BioSuite_Chla', parameter_context=biosuite_chla_ctxt.dump()))

        biosuite_cdom_ctxt = ParameterContext('BioSuite_CDOM', param_type=QuantityType(value_encoding=np.dtype('int16')))
        biosuite_cdom_ctxt.uom = 'unknown'
        context_ids.append(self.dataset_management.create_parameter_context(name='BioSuite_CDOM', parameter_context=biosuite_cdom_ctxt.dump()))

        biosuite_temp_ctxt = ParameterContext('BioSuite_Temp', param_type=QuantityType(value_encoding=np.dtype('int16')))
        biosuite_temp_ctxt.uom = 'unknown'
        context_ids.append(self.dataset_management.create_parameter_context(name='BioSuite_Temp', parameter_context=biosuite_temp_ctxt.dump()))

        biosuite_par_ctxt = ParameterContext('BioSuite_Par', param_type=QuantityType(value_encoding=np.dtype('int16')))
        biosuite_par_ctxt.uom = 'unknown'
        context_ids.append(self.dataset_management.create_parameter_context(name='BioSuite_Par', parameter_context=biosuite_par_ctxt.dump()))

        flbb_chla_ctxt = ParameterContext('FLBB_Chla', param_type=QuantityType(value_encoding=np.dtype('int16')))
        flbb_chla_ctxt.uom = 'unknown'
        context_ids.append(self.dataset_management.create_parameter_context(name='FLBB_Chla', parameter_context=flbb_chla_ctxt.dump()))

        flbb_turb_ctxt = ParameterContext('FLBB_Turb', param_type=QuantityType(value_encoding=np.dtype('int16')))
        flbb_turb_ctxt.uom = 'unknown'
        context_ids.append(self.dataset_management.create_parameter_context(name='FLBB_Turb', parameter_context=flbb_turb_ctxt.dump()))

        flbb_temp_ctxt = ParameterContext('FLBB_Temp', param_type=QuantityType(value_encoding=np.dtype('int16')))
        flbb_temp_ctxt.uom = 'unknown'
        context_ids.append(self.dataset_management.create_parameter_context(name='FLBB_Temp', parameter_context=flbb_temp_ctxt.dump()))

        return context_ids
开发者ID:shenrie,项目名称:coi-services,代码行数:93,代码来源:test_instrument_end_to_end.py

示例7: build_param_contexts

# 需要导入模块: from coverage_model.parameter import ParameterContext [as 别名]
# 或者: from coverage_model.parameter.ParameterContext import dump [as 别名]
    def build_param_contexts(self):
        context_ids = []
        t_ctxt = ParameterContext("c_wpt_y_lmc", param_type=QuantityType(value_encoding=np.dtype("float32")))
        t_ctxt.uom = "unknown"
        context_ids.append(
            self.dataset_management.create_parameter_context(name="c_wpt_y_lmc", parameter_context=t_ctxt.dump())
        )

        t_ctxt = ParameterContext("sci_water_cond", param_type=QuantityType(value_encoding=np.dtype("float32")))
        t_ctxt.uom = "unknown"
        context_ids.append(
            self.dataset_management.create_parameter_context(name="sci_water_cond", parameter_context=t_ctxt.dump())
        )

        t_ctxt = ParameterContext("m_y_lmc", param_type=QuantityType(value_encoding=np.dtype("float32")))
        t_ctxt.uom = "unknown"
        context_ids.append(
            self.dataset_management.create_parameter_context(name="m_y_lmc", parameter_context=t_ctxt.dump())
        )

        t_ctxt = ParameterContext(
            "u_hd_fin_ap_inflection_holdoff", param_type=QuantityType(value_encoding=np.dtype("float32"))
        )
        t_ctxt.uom = "unknown"
        context_ids.append(
            self.dataset_management.create_parameter_context(
                name="u_hd_fin_ap_inflection_holdoff", parameter_context=t_ctxt.dump()
            )
        )

        t_ctxt = ParameterContext("sci_m_present_time", param_type=QuantityType(value_encoding=np.dtype("float32")))
        t_ctxt.uom = "unknown"
        context_ids.append(
            self.dataset_management.create_parameter_context(name="sci_m_present_time", parameter_context=t_ctxt.dump())
        )

        t_ctxt = ParameterContext(
            "m_leakdetect_voltage_forward", param_type=QuantityType(value_encoding=np.dtype("float32"))
        )
        t_ctxt.uom = "unknown"
        context_ids.append(
            self.dataset_management.create_parameter_context(
                name="m_leakdetect_voltage_forward", parameter_context=t_ctxt.dump()
            )
        )

        t_ctxt = ParameterContext("sci_bb3slo_b660_scaled", param_type=QuantityType(value_encoding=np.dtype("float32")))
        t_ctxt.uom = "unknown"
        context_ids.append(
            self.dataset_management.create_parameter_context(
                name="sci_bb3slo_b660_scaled", parameter_context=t_ctxt.dump()
            )
        )

        t_ctxt = ParameterContext("c_science_send_all", param_type=QuantityType(value_encoding=np.dtype("float32")))
        t_ctxt.uom = "unknown"
        context_ids.append(
            self.dataset_management.create_parameter_context(name="c_science_send_all", parameter_context=t_ctxt.dump())
        )

        t_ctxt = ParameterContext("m_gps_status", param_type=QuantityType(value_encoding=np.dtype("float32")))
        t_ctxt.uom = "unknown"
        context_ids.append(
            self.dataset_management.create_parameter_context(name="m_gps_status", parameter_context=t_ctxt.dump())
        )

        t_ctxt = ParameterContext("m_water_vx", param_type=QuantityType(value_encoding=np.dtype("float32")))
        t_ctxt.uom = "unknown"
        context_ids.append(
            self.dataset_management.create_parameter_context(name="m_water_vx", parameter_context=t_ctxt.dump())
        )

        t_ctxt = ParameterContext("m_water_vy", param_type=QuantityType(value_encoding=np.dtype("float32")))
        t_ctxt.uom = "unknown"
        context_ids.append(
            self.dataset_management.create_parameter_context(name="m_water_vy", parameter_context=t_ctxt.dump())
        )

        t_ctxt = ParameterContext("c_heading", param_type=QuantityType(value_encoding=np.dtype("float32")))
        t_ctxt.uom = "unknown"
        context_ids.append(
            self.dataset_management.create_parameter_context(name="c_heading", parameter_context=t_ctxt.dump())
        )

        t_ctxt = ParameterContext("sci_fl3slo_chlor_units", param_type=QuantityType(value_encoding=np.dtype("float32")))
        t_ctxt.uom = "unknown"
        context_ids.append(
            self.dataset_management.create_parameter_context(
                name="sci_fl3slo_chlor_units", parameter_context=t_ctxt.dump()
            )
        )

        t_ctxt = ParameterContext("u_hd_fin_ap_gain", param_type=QuantityType(value_encoding=np.dtype("float32")))
        t_ctxt.uom = "unknown"
        context_ids.append(
            self.dataset_management.create_parameter_context(name="u_hd_fin_ap_gain", parameter_context=t_ctxt.dump())
        )

        t_ctxt = ParameterContext("m_vacuum", param_type=QuantityType(value_encoding=np.dtype("float32")))
        t_ctxt.uom = "unknown"
#.........这里部分代码省略.........
开发者ID:shenrie,项目名称:coi-services,代码行数:103,代码来源:test_bulk_data_ingestion.py

示例8: create_contexts

# 需要导入模块: from coverage_model.parameter import ParameterContext [as 别名]
# 或者: from coverage_model.parameter.ParameterContext import dump [as 别名]
    def create_contexts(self):
        context_ids = []
        cond_ctxt = ParameterContext('conductivity_test', param_type=QuantityType(value_encoding=np.float32))
        cond_ctxt.uom = 'unknown'
        cond_ctxt.fill_value = 0e0
        context_ids.append(self.dataset_management.create_parameter_context(name='conductivity_test', parameter_context=cond_ctxt.dump()))

        pres_ctxt = ParameterContext('pressure_test', param_type=QuantityType(value_encoding=np.float32))
        pres_ctxt.uom = 'Pascal'
        pres_ctxt.fill_value = 0x0
        context_ids.append(self.dataset_management.create_parameter_context(name='pressure_test', parameter_context=pres_ctxt.dump()))

        sal_ctxt = ParameterContext('salinity_test', param_type=QuantityType(value_encoding=np.float32))
        sal_ctxt.uom = 'PSU'
        sal_ctxt.fill_value = 0x0
        context_ids.append(self.dataset_management.create_parameter_context(name='salinity_test', parameter_context=sal_ctxt.dump()))

        temp_ctxt = ParameterContext('temp_test', param_type=QuantityType(value_encoding=np.float32))
        temp_ctxt.uom = 'degree_Celsius'
        temp_ctxt.fill_value = 0e0
        context_ids.append(self.dataset_management.create_parameter_context(name='temp_test', parameter_context=temp_ctxt.dump()))

        t_ctxt = ParameterContext('time_test', param_type=QuantityType(value_encoding=np.int64))
        t_ctxt.uom = 'seconds since 1970-01-01'
        t_ctxt.fill_value = 0x0
        context_ids.append(self.dataset_management.create_parameter_context(name='time_test', parameter_context=t_ctxt.dump()))

        return context_ids
开发者ID:blazetopher,项目名称:coi-services,代码行数:30,代码来源:test_dataset_management.py


注:本文中的coverage_model.parameter.ParameterContext.dump方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。