当前位置: 首页>>代码示例>>Python>>正文


Python ParameterContext.axis方法代码示例

本文整理汇总了Python中coverage_model.parameter.ParameterContext.axis方法的典型用法代码示例。如果您正苦于以下问题:Python ParameterContext.axis方法的具体用法?Python ParameterContext.axis怎么用?Python ParameterContext.axis使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在coverage_model.parameter.ParameterContext的用法示例。


在下文中一共展示了ParameterContext.axis方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: create_parameters

# 需要导入模块: from coverage_model.parameter import ParameterContext [as 别名]
# 或者: from coverage_model.parameter.ParameterContext import axis [as 别名]
    def create_parameters(cls):
        '''
        WARNING: This method is a wrapper intended only for tests, it should not be used in production code.
        It probably will not align to most datasets.
        '''
        pdict = ParameterDictionary()
        t_ctxt = ParameterContext('time', param_type=QuantityType(value_encoding=np.int64))
        t_ctxt.axis = AxisTypeEnum.TIME
        t_ctxt.uom = 'seconds since 1970-01-01'
        t_ctxt.fill_value = 0x0
        pdict.add_context(t_ctxt)

        lat_ctxt = ParameterContext('lat', param_type=QuantityType(value_encoding=np.float32))
        lat_ctxt.axis = AxisTypeEnum.LAT
        lat_ctxt.uom = 'degree_north'
        lat_ctxt.fill_value = 0e0
        pdict.add_context(lat_ctxt)

        lon_ctxt = ParameterContext('lon', param_type=QuantityType(value_encoding=np.float32))
        lon_ctxt.axis = AxisTypeEnum.LON
        lon_ctxt.uom = 'degree_east'
        lon_ctxt.fill_value = 0e0
        pdict.add_context(lon_ctxt)

        temp_ctxt = ParameterContext('temp', param_type=QuantityType(value_encoding=np.float32))
        temp_ctxt.uom = 'degree_Celsius'
        temp_ctxt.fill_value = 0e0
        pdict.add_context(temp_ctxt)

        cond_ctxt = ParameterContext('conductivity', param_type=QuantityType(value_encoding=np.float32))
        cond_ctxt.uom = 'unknown'
        cond_ctxt.fill_value = 0e0
        pdict.add_context(cond_ctxt)

        data_ctxt = ParameterContext('data', param_type=QuantityType(value_encoding=np.int8))
        data_ctxt.uom = 'byte'
        data_ctxt.fill_value = 0x0
        pdict.add_context(data_ctxt)

        pres_ctxt = ParameterContext('pressure', param_type=QuantityType(value_encoding=np.float32))
        pres_ctxt.uom = 'Pascal'
        pres_ctxt.fill_value = 0x0
        pdict.add_context(pres_ctxt)

        sal_ctxt = ParameterContext('salinity', param_type=QuantityType(value_encoding=np.float32))
        sal_ctxt.uom = 'PSU'
        sal_ctxt.fill_value = 0x0
        pdict.add_context(sal_ctxt)

        dens_ctxt = ParameterContext('density', param_type=QuantityType(value_encoding=np.float32))
        dens_ctxt.uom = 'unknown'
        dens_ctxt.fill_value = 0x0
        pdict.add_context(dens_ctxt)

        return pdict
开发者ID:Bobfrat,项目名称:coi-services,代码行数:57,代码来源:granule_utils.py

示例2: _create_parameter_dictionary

# 需要导入模块: from coverage_model.parameter import ParameterContext [as 别名]
# 或者: from coverage_model.parameter.ParameterContext import axis [as 别名]
    def _create_parameter_dictionary(self):
        pdict = ParameterDictionary()

        lat_ctxt = ParameterContext('lat', param_type=QuantityType(value_encoding=numpy.dtype('float32')))
        lat_ctxt.axis = AxisTypeEnum.LAT
        lat_ctxt.uom = 'degree_north'
        pdict.add_context(lat_ctxt)

        lon_ctxt = ParameterContext('lon', param_type=QuantityType(value_encoding=numpy.dtype('float32')))
        lon_ctxt.axis = AxisTypeEnum.LON
        lon_ctxt.uom = 'degree_east'
        pdict.add_context(lon_ctxt)

        return pdict
开发者ID:blazetopher,项目名称:coi-services,代码行数:16,代码来源:test_external_dataset_agent.py

示例3: _create_parameter_dictionary

# 需要导入模块: from coverage_model.parameter import ParameterContext [as 别名]
# 或者: from coverage_model.parameter.ParameterContext import axis [as 别名]
    def _create_parameter_dictionary(self):
        pdict = ParameterDictionary()

        lat_ctxt = ParameterContext('lat', param_type=QuantityType(value_encoding=numpy.dtype('float32')))
        lat_ctxt.axis = AxisTypeEnum.LAT
        lat_ctxt.uom = 'degree_north'
        pdict.add_context(lat_ctxt)

        lon_ctxt = ParameterContext('lon', param_type=QuantityType(value_encoding=numpy.dtype('float32')))
        lon_ctxt.axis = AxisTypeEnum.LON
        lon_ctxt.uom = 'degree_east'
        pdict.add_context(lon_ctxt)

        temp_ctxt = ParameterContext('water_temperature', param_type=QuantityType(value_encoding=numpy.dtype('float32')))
        temp_ctxt.uom = 'degree_Celsius'
        pdict.add_context(temp_ctxt)

        temp_ctxt = ParameterContext('water_temperature_bottom', param_type=QuantityType(value_encoding=numpy.dtype('float32')))
        temp_ctxt.uom = 'degree_Celsius'
        pdict.add_context(temp_ctxt)

        temp_ctxt = ParameterContext('water_temperature_middle', param_type=QuantityType(value_encoding=numpy.dtype('float32')))
        temp_ctxt.uom = 'degree_Celsius'
        pdict.add_context(temp_ctxt)

        temp_ctxt = ParameterContext('z', param_type=QuantityType(value_encoding=numpy.dtype('float32')))
        temp_ctxt.uom = 'meters'
        pdict.add_context(temp_ctxt)

        cond_ctxt = ParameterContext('streamflow', param_type=QuantityType(value_encoding=numpy.dtype('float32')))
        cond_ctxt.uom = 'unknown'
        pdict.add_context(cond_ctxt)

        pres_ctxt = ParameterContext('specific_conductance', param_type=QuantityType(value_encoding=numpy.dtype('float32')))
        pres_ctxt.uom = 'unknown'
        pdict.add_context(pres_ctxt)

        pres_ctxt = ParameterContext('data_qualifier', param_type=QuantityType(value_encoding=numpy.dtype('bool')))
        pres_ctxt.uom = 'unknown'
        pdict.add_context(pres_ctxt)

        return pdict
开发者ID:jamie-cyber1,项目名称:coi-services,代码行数:44,代码来源:test_external_dataset_agent_netcdf.py

示例4: create

# 需要导入模块: from coverage_model.parameter import ParameterContext [as 别名]
# 或者: from coverage_model.parameter.ParameterContext import axis [as 别名]
    def create(self, path):
        mkdir_silent(path)
        
        tcrs = CRS([AxisTypeEnum.TIME])
        scrs = CRS([AxisTypeEnum.LON, AxisTypeEnum.LAT, AxisTypeEnum.HEIGHT])

        tdom = GridDomain(GridShape('temporal', [0]), tcrs, MutabilityEnum.EXTENSIBLE)
        sdom = GridDomain(GridShape('spatial', [0]), scrs, MutabilityEnum.IMMUTABLE) # Dimensionality is excluded for now
            
        pdict = ParameterDictionary()
        t_ctxt = ParameterContext('time', param_type=QuantityType(value_encoding=np.int64))
        t_ctxt.axis = AxisTypeEnum.TIME
        t_ctxt.uom = 'seconds since 1970-01-01'
        t_ctxt.fill_value = 0x0
        pdict.add_context(t_ctxt)

        lat_ctxt = ParameterContext('lat', param_type=QuantityType(value_encoding=np.float32))
        lat_ctxt.axis = AxisTypeEnum.LAT
        lat_ctxt.uom = 'degree_north'
        lat_ctxt.fill_value = 0e0
        pdict.add_context(lat_ctxt)

        lon_ctxt = ParameterContext('lon', param_type=QuantityType(value_encoding=np.float32))
        lon_ctxt.axis = AxisTypeEnum.LON
        lon_ctxt.uom = 'degree_east'
        lon_ctxt.fill_value = 0e0
        pdict.add_context(lon_ctxt)

        dens_ctxt = ParameterContext('data_quantity', param_type=QuantityType(value_encoding=np.float32))
        dens_ctxt.uom = 'unknown'
        dens_ctxt.fill_value = 0x0
        pdict.add_context(dens_ctxt)
        
        serial_ctxt = ParameterContext('data_array', param_type=ArrayType())
        serial_ctxt.uom = 'unknown'
        serial_ctxt.fill_value = 0x0
        pdict.add_context(serial_ctxt)
       
        guid = str(uuid.uuid4()).upper()

        self.path = path
        self.cov = SimplexCoverage(path, guid, name='test_cov', parameter_dictionary=pdict, temporal_domain=tdom, spatial_domain=sdom)
开发者ID:mbarry02,项目名称:coverage_writer,代码行数:44,代码来源:coverage_writer.py

示例5: build_context

# 需要导入模块: from coverage_model.parameter import ParameterContext [as 别名]
# 或者: from coverage_model.parameter.ParameterContext import axis [as 别名]
 def build_context(self,record):
     context = ParameterContext(name=record['Name'], param_type=self.param_type(record['Parameter Type']))
     context.uom = record['Unit of Measure']
     if record['Fill Value']:
         context.fill_value = self.fill_value(record['Fill Value'], record['Parameter Type'])
     if record['Axis']:
         context.axis = self.ref_frame(record['Axis'])
     for key in self.additional_attrs.iterkeys():
         if key in record and record[key]:
             setattr(context,self.additional_attrs[key],record[key])
     return context
开发者ID:Bobfrat,项目名称:coi-services,代码行数:13,代码来源:load_csv.py

示例6: _add_location_time_ctxt

# 需要导入模块: from coverage_model.parameter import ParameterContext [as 别名]
# 或者: from coverage_model.parameter.ParameterContext import axis [as 别名]
    def _add_location_time_ctxt(self, pdict):

        t_ctxt = ParameterContext('time', param_type=QuantityType(value_encoding=numpy.int64))
        t_ctxt.axis = AxisTypeEnum.TIME
        t_ctxt.uom = 'seconds since 1970-01-01'
        t_ctxt.fill_value = 0x0
        pdict.add_context(t_ctxt)

        lat_ctxt = ParameterContext('lat', param_type=QuantityType(value_encoding=numpy.float32))
        lat_ctxt.axis = AxisTypeEnum.LAT
        lat_ctxt.uom = 'degree_north'
        lat_ctxt.fill_value = 0e0
        pdict.add_context(lat_ctxt)

        lon_ctxt = ParameterContext('lon', param_type=QuantityType(value_encoding=numpy.float32))
        lon_ctxt.axis = AxisTypeEnum.LON
        lon_ctxt.uom = 'degree_east'
        lon_ctxt.fill_value = 0e0
        pdict.add_context(lon_ctxt)

        return pdict
开发者ID:Bobfrat,项目名称:coi-services,代码行数:23,代码来源:sinusoidal_stream_publisher.py

示例7: _setup_resources

# 需要导入模块: from coverage_model.parameter import ParameterContext [as 别名]
# 或者: from coverage_model.parameter.ParameterContext import axis [as 别名]
    def _setup_resources(self):
        pdict = ParameterDictionary()

        t_ctxt = ParameterContext('data', param_type=QuantityType(value_encoding=numpy.dtype('int64')))
        t_ctxt.axis = AxisTypeEnum.TIME
        t_ctxt.uom = 'seconds since 01-01-1970'
        pdict.add_context(t_ctxt)

        stream_id, stream_route, stream_def = self.create_stream_and_logger(name='fibonacci_stream', pdict=pdict)
        #        tx = TaxyTool()
        #        tx.add_taxonomy_set('data', 'external_data')

        self.DVR_CONFIG['dh_cfg'] = {
            'TESTING': True,
            'stream_id': stream_id,
            'stream_route': stream_route,
            'stream_def': stream_def,
            'data_producer_id': 'fibonacci_data_producer_id',
            'max_records': 4,
            }
开发者ID:blazetopher,项目名称:coi-services,代码行数:22,代码来源:test_external_dataset_agent.py

示例8: _setup_resources

# 需要导入模块: from coverage_model.parameter import ParameterContext [as 别名]
# 或者: from coverage_model.parameter.ParameterContext import axis [as 别名]

#.........这里部分代码省略.........

        # Create DataSource
        dsrc = DataSource(protocol_type='FILE', institution=Institution(), contact=ContactInformation())
        dsrc.connection_params['base_data_url'] = ''
        dsrc.contact.name='Tim Giguere'
        dsrc.contact.email = '[email protected]'

        # Create ExternalDataset
        ds_name = 'ruv_test_dataset'
        dset = ExternalDataset(name=ds_name, dataset_description=DatasetDescription(), update_description=UpdateDescription(), contact=ContactInformation())

        dset.dataset_description.parameters['base_url'] = 'test_data/ruv/'
        dset.dataset_description.parameters['list_pattern'] = 'RDLi_SEAB_2011_08_24_1600.ruv'
        dset.dataset_description.parameters['date_pattern'] = '%Y %m %d %H %M'
        dset.dataset_description.parameters['date_extraction_pattern'] = 'RDLi_SEAB_([\d]{4})_([\d]{2})_([\d]{2})_([\d]{2})([\d]{2}).ruv'
        dset.dataset_description.parameters['temporal_dimension'] = None
        dset.dataset_description.parameters['zonal_dimension'] = None
        dset.dataset_description.parameters['meridional_dimension'] = None
        dset.dataset_description.parameters['vertical_dimension'] = None
        dset.dataset_description.parameters['variables'] = [
        ]

        # Create DataSourceModel
        dsrc_model = DataSourceModel(name='ruv_model')
        dsrc_model.model = 'RUV'
        dsrc_model.data_handler_module = 'N/A'
        dsrc_model.data_handler_class = 'N/A'

        ## Run everything through DAMS
        ds_id = dams_cli.create_external_dataset(external_dataset=dset)
        ext_dprov_id = dams_cli.create_external_data_provider(external_data_provider=dprov)
        ext_dsrc_id = dams_cli.create_data_source(data_source=dsrc)
        ext_dsrc_model_id = dams_cli.create_data_source_model(dsrc_model)

        # Register the ExternalDataset
        dproducer_id = dams_cli.register_external_data_set(external_dataset_id=ds_id)

        # Or using each method
        dams_cli.assign_data_source_to_external_data_provider(data_source_id=ext_dsrc_id, external_data_provider_id=ext_dprov_id)
        dams_cli.assign_data_source_to_data_model(data_source_id=ext_dsrc_id, data_source_model_id=ext_dsrc_model_id)
        dams_cli.assign_external_dataset_to_data_source(external_dataset_id=ds_id, data_source_id=ext_dsrc_id)
        dams_cli.assign_external_dataset_to_agent_instance(external_dataset_id=ds_id, agent_instance_id=eda_inst_id)
        #        dams_cli.assign_external_data_agent_to_agent_instance(external_data_agent_id=self.eda_id, agent_instance_id=self.eda_inst_id)

        #create temp streamdef so the data product can create the stream

        craft = CoverageCraft
        sdom, tdom = craft.create_domains()
        sdom = sdom.dump()
        tdom = tdom.dump()
        parameter_dictionary = craft.create_parameters()
        parameter_dictionary = parameter_dictionary.dump()

        dprod = IonObject(RT.DataProduct,
            name='ruv_parsed_product',
            description='parsed ruv product',
            temporal_domain = tdom,
            spatial_domain = sdom)

        streamdef_id = pubsub_cli.create_stream_definition(name="temp", description="temp")

        # Generate the data product and associate it to the ExternalDataset
        dproduct_id = dpms_cli.create_data_product(data_product=dprod,
                                                    stream_definition_id=streamdef_id,
                                                    parameter_dictionary=parameter_dictionary)

        dams_cli.assign_data_product(input_resource_id=ds_id, data_product_id=dproduct_id)

        stream_id, assn = rr_cli.find_objects(subject=dproduct_id, predicate=PRED.hasStream, object_type=RT.Stream, id_only=True)
        stream_id = stream_id[0]

        log.info('Created resources: {0}'.format({'ExternalDataset':ds_id, 'ExternalDataProvider':ext_dprov_id, 'DataSource':ext_dsrc_id, 'DataSourceModel':ext_dsrc_model_id, 'DataProducer':dproducer_id, 'DataProduct':dproduct_id, 'Stream':stream_id}))

        #CBM: Use CF standard_names

        #ttool = TaxyTool()
        #
        #ttool.add_taxonomy_set('data','test data')
        pdict = ParameterDictionary()

        t_ctxt = ParameterContext('data', param_type=QuantityType(value_encoding=numpy.dtype('int64')))
        t_ctxt.axis = AxisTypeEnum.TIME
        t_ctxt.uom = 'seconds since 01-01-1970'
        pdict.add_context(t_ctxt)

        #CBM: Eventually, probably want to group this crap somehow - not sure how yet...

        # Create the logger for receiving publications
        self.create_stream_and_logger(name='ruv',stream_id=stream_id)

        self.EDA_RESOURCE_ID = ds_id
        self.EDA_NAME = ds_name
        self.DVR_CONFIG['dh_cfg'] = {
            'TESTING':True,
            'stream_id':stream_id,
            'external_dataset_res':dset,
            'param_dictionary':pdict.dump(),
            'data_producer_id':dproducer_id,#CBM: Should this be put in the main body of the config - with mod & cls?
            'max_records':20,
        }
开发者ID:kerfoot,项目名称:coi-services,代码行数:104,代码来源:test_external_dataset_agent_ruv.py

示例9: _setup_resources

# 需要导入模块: from coverage_model.parameter import ParameterContext [as 别名]
# 或者: from coverage_model.parameter.ParameterContext import axis [as 别名]

#.........这里部分代码省略.........
        craft = CoverageCraft
        sdom, tdom = craft.create_domains()
        sdom = sdom.dump()
        tdom = tdom.dump()
        parameter_dictionary = craft.create_parameters()
        parameter_dictionary = parameter_dictionary.dump()

        dprod = IonObject(RT.DataProduct,
            name='usgs_parsed_product',
            description='parsed usgs product',
            temporal_domain = tdom,
            spatial_domain = sdom)

        # Generate the data product and associate it to the ExternalDataset
        dproduct_id = dpms_cli.create_data_product(data_product=dprod,
                                                    stream_definition_id=streamdef_id,
                                                    parameter_dictionary=parameter_dictionary)

        dams_cli.assign_data_product(input_resource_id=ds_id, data_product_id=dproduct_id)

        stream_id, assn = rr_cli.find_objects(subject=dproduct_id, predicate=PRED.hasStream, object_type=RT.Stream, id_only=True)
        stream_id = stream_id[0]

        log.info('Created resources: {0}'.format({'ExternalDataset':ds_id, 'ExternalDataProvider':ext_dprov_id, 'DataSource':ext_dsrc_id, 'DataSourceModel':ext_dsrc_model_id, 'DataProducer':dproducer_id, 'DataProduct':dproduct_id, 'Stream':stream_id}))

        #CBM: Use CF standard_names

#        ttool = TaxyTool()
#        ttool.add_taxonomy_set('time','time')
#        ttool.add_taxonomy_set('lon','longitude')
#        ttool.add_taxonomy_set('lat','latitude')
#        ttool.add_taxonomy_set('z','water depth')
#        ttool.add_taxonomy_set('water_temperature', 'average water temperature')
#        ttool.add_taxonomy_set('water_temperature_bottom','water temperature at bottom of water column')
#        ttool.add_taxonomy_set('water_temperature_middle', 'water temperature at middle of water column')
#        ttool.add_taxonomy_set('streamflow', 'flow velocity of stream')
#        ttool.add_taxonomy_set('specific_conductance', 'specific conductance of water')
#        ttool.add_taxonomy_set('data_qualifier','data qualifier flag')
#
#        ttool.add_taxonomy_set('coords','This group contains coordinate parameters')
#        ttool.add_taxonomy_set('data','This group contains data parameters')

        # Create the logger for receiving publications
        self.create_stream_and_logger(name='usgs',stream_id=stream_id)

        pdict = ParameterDictionary()

        t_ctxt = ParameterContext('time', param_type=QuantityType(value_encoding=numpy.dtype('int64')))
        t_ctxt.axis = AxisTypeEnum.TIME
        t_ctxt.uom = 'seconds since 01-01-1970'
        pdict.add_context(t_ctxt)

        lat_ctxt = ParameterContext('lat', param_type=QuantityType(value_encoding=numpy.dtype('float32')))
        lat_ctxt.axis = AxisTypeEnum.LAT
        lat_ctxt.uom = 'degree_north'
        pdict.add_context(lat_ctxt)

        lon_ctxt = ParameterContext('lon', param_type=QuantityType(value_encoding=numpy.dtype('float32')))
        lon_ctxt.axis = AxisTypeEnum.LON
        lon_ctxt.uom = 'degree_east'
        pdict.add_context(lon_ctxt)

        temp_ctxt = ParameterContext('water_temperature', param_type=QuantityType(value_encoding=numpy.dtype('float32')))
        temp_ctxt.uom = 'degree_Celsius'
        pdict.add_context(temp_ctxt)

        temp_ctxt = ParameterContext('water_temperature_bottom', param_type=QuantityType(value_encoding=numpy.dtype('float32')))
        temp_ctxt.uom = 'degree_Celsius'
        pdict.add_context(temp_ctxt)

        temp_ctxt = ParameterContext('water_temperature_middle', param_type=QuantityType(value_encoding=numpy.dtype('float32')))
        temp_ctxt.uom = 'degree_Celsius'
        pdict.add_context(temp_ctxt)

        temp_ctxt = ParameterContext('z', param_type=QuantityType(value_encoding = numpy.dtype('float32')))
        temp_ctxt.uom = 'meters'
        pdict.add_context(temp_ctxt)

        cond_ctxt = ParameterContext('streamflow', param_type=QuantityType(value_encoding=numpy.dtype('float32')))
        cond_ctxt.uom = 'unknown'
        pdict.add_context(cond_ctxt)

        pres_ctxt = ParameterContext('specific_conductance', param_type=QuantityType(value_encoding=numpy.dtype('float32')))
        pres_ctxt.uom = 'unknown'
        pdict.add_context(pres_ctxt)

        pres_ctxt = ParameterContext('data_qualifier', param_type=QuantityType(value_encoding=numpy.dtype('bool')))
        pres_ctxt.uom = 'unknown'
        pdict.add_context(pres_ctxt)

        self.EDA_RESOURCE_ID = ds_id
        self.EDA_NAME = ds_name
        self.DVR_CONFIG['dh_cfg'] = {
            'TESTING':True,
            'stream_id':stream_id,
            #'taxonomy':ttool.dump(),
            'param_dictionary':pdict.dump(),
            'data_producer_id':dproducer_id,#CBM: Should this be put in the main body of the config - with mod & cls?
            'max_records':1,
        }
开发者ID:kerfoot,项目名称:coi-services,代码行数:104,代码来源:test_external_dataset_agent_netcdf.py

示例10: _make_coverage

# 需要导入模块: from coverage_model.parameter import ParameterContext [as 别名]
# 或者: from coverage_model.parameter.ParameterContext import axis [as 别名]
def _make_coverage(path):
    tcrs = CRS([AxisTypeEnum.TIME])
    scrs = CRS([AxisTypeEnum.LON, AxisTypeEnum.LAT, AxisTypeEnum.HEIGHT])

    tdom = GridDomain(GridShape('temporal', [0]), tcrs, MutabilityEnum.EXTENSIBLE)
    sdom = GridDomain(GridShape('spatial', [0]), scrs, MutabilityEnum.IMMUTABLE) # Dimensionality is excluded for now
        
    pdict = ParameterDictionary()
    t_ctxt = ParameterContext('time', param_type=QuantityType(value_encoding=np.int64))
    t_ctxt.axis = AxisTypeEnum.TIME
    t_ctxt.uom = 'seconds since 1970-01-01'
    t_ctxt.fill_value = 0x0
    pdict.add_context(t_ctxt)
    
    lat_ctxt = ParameterContext('lat', param_type=QuantityType(value_encoding=np.float32))
    lat_ctxt.axis = AxisTypeEnum.LAT
    lat_ctxt.uom = 'degree_north'
    lat_ctxt.fill_value = 0e0
    pdict.add_context(lat_ctxt)

    lon_ctxt = ParameterContext('lon', param_type=QuantityType(value_encoding=np.float32))
    lon_ctxt.axis = AxisTypeEnum.LON
    lon_ctxt.uom = 'degree_east'
    lon_ctxt.fill_value = 0e0
    pdict.add_context(lon_ctxt)
    
    cat = {0:'lemon',1:'apple',2:'banana',99:'None'}
    cat_ctxt = ParameterContext('category', param_type=CategoryType(categories=cat))
    cat_ctxt.long_name = "example of category"
    pdict.add_context(cat_ctxt)
    

    dens_ctxt = ParameterContext('quantity', param_type=QuantityType(value_encoding=np.float32))
    dens_ctxt.uom = 'unknown'
    dens_ctxt.fill_value = 0x0
    pdict.add_context(dens_ctxt)
    
    
    const_ctxt = ParameterContext('constant', param_type=ConstantType())
    const_ctxt.long_name = 'example of a parameter of type ConstantType'
    pdict.add_context(const_ctxt)
    
    rec_ctxt = ParameterContext('boolean', param_type=BooleanType())
    rec_ctxt.long_name = 'example of a parameter of type BooleanType'
    pdict.add_context(rec_ctxt)
    
    
    rec_ctxt = ParameterContext('range', param_type=ConstantRangeType())
    rec_ctxt.long_name = 'Range example'
    rec_ctxt.fill_value = 0x0
    pdict.add_context(rec_ctxt)
    
    rec_ctxt = ParameterContext('record', param_type=RecordType())
    rec_ctxt.long_name = 'example of a parameter of type RecordType, will be filled with dictionaries'
    rec_ctxt.fill_value = 0x0
    pdict.add_context(rec_ctxt)
    
    serial_ctxt = ParameterContext('array', param_type=ArrayType())
    serial_ctxt.uom = 'unknown'
    serial_ctxt.fill_value = 0x0
    pdict.add_context(serial_ctxt)
    
    guid = create_guid()
    guid = guid.replace("-", "")
    cov = SimplexCoverage(path, guid, name="sample_cov", parameter_dictionary=pdict, temporal_domain=tdom, spatial_domain=sdom)
    
    return (cov,path+os.sep+guid)
开发者ID:swarbhanu,项目名称:coi-services,代码行数:69,代码来源:test_coverage_handler.py

示例11: build_contexts

# 需要导入模块: from coverage_model.parameter import ParameterContext [as 别名]
# 或者: from coverage_model.parameter.ParameterContext import axis [as 别名]
def build_contexts():
    '''
    Builds the relevant parameter context objects
    '''

    contexts = []

    cond_ctxt = ParameterContext('conductivity', param_type=QuantityType(value_encoding=np.float32))
    cond_ctxt.uom = 'unknown'
    cond_ctxt.fill_value = 0e0
    contexts.append(cond_ctxt)

    pres_ctxt = ParameterContext('pressure', param_type=QuantityType(value_encoding=np.float32))
    pres_ctxt.uom = 'Pascal'
    pres_ctxt.fill_value = 0x0
    contexts.append(pres_ctxt)

    sal_ctxt = ParameterContext('salinity', param_type=QuantityType(value_encoding=np.float32))
    sal_ctxt.uom = 'PSU'
    sal_ctxt.fill_value = 0x0
    contexts.append(sal_ctxt)

    den_ctxt = ParameterContext('density', param_type=QuantityType(value_encoding=np.float32))
    den_ctxt.uom = 'kg/m3'
    den_ctxt.fill_value = 0x0
    contexts.append(den_ctxt)

    temp_ctxt = ParameterContext('temp', param_type=QuantityType(value_encoding=np.float32))
    temp_ctxt.uom = 'degree_Celsius'
    temp_ctxt.fill_value = 0e0
    contexts.append(temp_ctxt)

    t_ctxt = ParameterContext('time', param_type=QuantityType(value_encoding=np.int64))
    t_ctxt.uom = 'seconds since 1970-01-01'
    t_ctxt.fill_value = 0x0
    contexts.append(t_ctxt)

    lat_ctxt = ParameterContext('lat', param_type=QuantityType(value_encoding=np.float32))
    lat_ctxt.axis = AxisTypeEnum.LAT
    lat_ctxt.uom = 'degree_north'
    lat_ctxt.fill_value = 0e0
    contexts.append(lat_ctxt)

    lon_ctxt = ParameterContext('lon', param_type=QuantityType(value_encoding=np.float32))
    lon_ctxt.axis = AxisTypeEnum.LON
    lon_ctxt.uom = 'degree_east'
    lon_ctxt.fill_value = 0e0
    contexts.append(lon_ctxt)

    raw_ctxt = ParameterContext('raw', param_type=ArrayType())
    raw_ctxt.description = 'raw binary string values'
    raw_ctxt.uom = 'utf-8 byte string'
    raw_ctxt.fill_value = 0x0
    contexts.append(raw_ctxt)

    port_ts_ctxt = ParameterContext(name='port_timestamp', param_type=QuantityType(value_encoding=np.float64))
    port_ts_ctxt._derived_from_name = 'time'
    port_ts_ctxt.uom = 'seconds'
    port_ts_ctxt.fill_value = -1
    contexts.append(port_ts_ctxt)

    driver_ts_ctxt = ParameterContext(name='driver_timestamp', param_type=QuantityType(value_encoding=np.float64))
    driver_ts_ctxt._derived_from_name = 'time'
    driver_ts_ctxt.uom = 'seconds'
    driver_ts_ctxt.fill_value = -1
    contexts.append(driver_ts_ctxt)

    internal_ts_ctxt = ParameterContext(name='internal_timestamp', param_type=QuantityType(value_encoding=np.float64))
    internal_ts_ctxt._derived_from_name = 'time'
    internal_ts_ctxt.uom = 'seconds'
    internal_ts_ctxt.fill_value = -1
    contexts.append(internal_ts_ctxt)

    timer_num_ctxt = ParameterContext(name='timer', param_type=QuantityType(value_encoding=np.float64))
    timer_num_ctxt.fill_value = -1
    contexts.append(timer_num_ctxt)

    serial_num_ctxt = ParameterContext(name='serial_num', param_type=QuantityType(value_encoding=np.int32))
    serial_num_ctxt.fill_value = -1
    contexts.append(serial_num_ctxt)

    count_ctxt = ParameterContext(name='counts', param_type=QuantityType(value_encoding=np.uint64))
    count_ctxt.fill_value = -1
    contexts.append(count_ctxt)

    checksum_ctxt = ParameterContext(name='checksum', param_type=QuantityType(value_encoding=np.int32))
    checksum_ctxt.fill_value = -1
    contexts.append(checksum_ctxt)

    pref_ts_ctxt = ParameterContext(name='preferred_timestamp', param_type=QuantityType(value_encoding=np.uint64))
    pref_ts_ctxt.description = 'name of preferred timestamp'
    pref_ts_ctxt.fill_value = 0x0
    contexts.append(pref_ts_ctxt)

    # TODO: This should probably be of type CategoryType when implemented
    qual_flag_ctxt = ParameterContext(name='quality_flag', param_type=ArrayType())
    qual_flag_ctxt.description = 'flag indicating quality'
    qual_flag_ctxt.fill_value = None
    contexts.append(qual_flag_ctxt)

#.........这里部分代码省略.........
开发者ID:Bobfrat,项目名称:coi-services,代码行数:103,代码来源:parameter_yaml_IO.py


注:本文中的coverage_model.parameter.ParameterContext.axis方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。