本文整理汇总了Python中cobra.core.Reaction.subsystem方法的典型用法代码示例。如果您正苦于以下问题:Python Reaction.subsystem方法的具体用法?Python Reaction.subsystem怎么用?Python Reaction.subsystem使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cobra.core.Reaction
的用法示例。
在下文中一共展示了Reaction.subsystem方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: convert_to_irreversible
# 需要导入模块: from cobra.core import Reaction [as 别名]
# 或者: from cobra.core.Reaction import subsystem [as 别名]
def convert_to_irreversible(cobra_model):
"""Split reversible reactions into two irreversible reactions
These two reactions will proceed in opposite directions. This
guarentees that all reactions in the model will only allow
positive flux values, which is useful for some modeling problems.
cobra_model: A Model object which will be modified in place.
"""
warn("deprecated, not applicable for optlang solvers", DeprecationWarning)
reactions_to_add = []
coefficients = {}
for reaction in cobra_model.reactions:
# If a reaction is reverse only, the forward reaction (which
# will be constrained to 0) will be left in the model.
if reaction.lower_bound < 0:
reverse_reaction = Reaction(reaction.id + "_reverse")
reverse_reaction.lower_bound = max(0, -reaction.upper_bound)
reverse_reaction.upper_bound = -reaction.lower_bound
coefficients[
reverse_reaction] = reaction.objective_coefficient * -1
reaction.lower_bound = max(0, reaction.lower_bound)
reaction.upper_bound = max(0, reaction.upper_bound)
# Make the directions aware of each other
reaction.notes["reflection"] = reverse_reaction.id
reverse_reaction.notes["reflection"] = reaction.id
reaction_dict = {k: v * -1
for k, v in iteritems(reaction._metabolites)}
reverse_reaction.add_metabolites(reaction_dict)
reverse_reaction._model = reaction._model
reverse_reaction._genes = reaction._genes
for gene in reaction._genes:
gene._reaction.add(reverse_reaction)
reverse_reaction.subsystem = reaction.subsystem
reverse_reaction._gene_reaction_rule = reaction._gene_reaction_rule
reactions_to_add.append(reverse_reaction)
cobra_model.add_reactions(reactions_to_add)
set_objective(cobra_model, coefficients, additive=True)
示例2: create_cobra_model_from_sbml_file
# 需要导入模块: from cobra.core import Reaction [as 别名]
# 或者: from cobra.core.Reaction import subsystem [as 别名]
#.........这里部分代码省略.........
# specified then the bounds are determined by getReversible.
if not sbml_reaction.getKineticLaw():
if sbml_reaction.getReversible():
parameter_dict['lower_bound'] = __default_lower_bound
parameter_dict['upper_bound'] = __default_upper_bound
else:
# Assume that irreversible reactions only proceed from left to
# right.
parameter_dict['lower_bound'] = 0
parameter_dict['upper_bound'] = __default_upper_bound
parameter_dict[
'objective_coefficient'] = __default_objective_coefficient
else:
for sbml_parameter in \
sbml_reaction.getKineticLaw().getListOfParameters():
parameter_dict[
sbml_parameter.getId().lower()] = sbml_parameter.getValue()
if 'lower_bound' in parameter_dict:
reaction.lower_bound = parameter_dict['lower_bound']
elif 'lower bound' in parameter_dict:
reaction.lower_bound = parameter_dict['lower bound']
elif sbml_reaction.getReversible():
reaction.lower_bound = __default_lower_bound
else:
reaction.lower_bound = 0
if 'upper_bound' in parameter_dict:
reaction.upper_bound = parameter_dict['upper_bound']
elif 'upper bound' in parameter_dict:
reaction.upper_bound = parameter_dict['upper bound']
else:
reaction.upper_bound = __default_upper_bound
objective_coefficient = parameter_dict.get(
'objective_coefficient', parameter_dict.get(
'objective_coefficient', __default_objective_coefficient))
if objective_coefficient != 0:
coefficients[reaction] = objective_coefficient
# ensure values are not set to nan or inf
if isnan(reaction.lower_bound) or isinf(reaction.lower_bound):
reaction.lower_bound = __default_lower_bound
if isnan(reaction.upper_bound) or isinf(reaction.upper_bound):
reaction.upper_bound = __default_upper_bound
reaction_note_dict = parse_legacy_sbml_notes(
sbml_reaction.getNotesString())
# Parse the reaction notes.
# POTENTIAL BUG: DEALING WITH LEGACY 'SBML' THAT IS NOT IN A
# STANDARD FORMAT
# TODO: READ IN OTHER NOTES AND GIVE THEM A reaction_ prefix.
# TODO: Make sure genes get added as objects
if 'GENE ASSOCIATION' in reaction_note_dict:
rule = reaction_note_dict['GENE ASSOCIATION'][0]
try:
rule.encode('ascii')
except (UnicodeEncodeError, UnicodeDecodeError):
warn("gene_reaction_rule '%s' is not ascii compliant" % rule)
if rule.startswith(""") and rule.endswith("""):
rule = rule[6:-6]
reaction.gene_reaction_rule = rule
if 'GENE LIST' in reaction_note_dict:
reaction.systematic_names = reaction_note_dict['GENE LIST'][0]
elif ('GENES' in reaction_note_dict and
reaction_note_dict['GENES'] != ['']):
reaction.systematic_names = reaction_note_dict['GENES'][0]
elif 'LOCUS' in reaction_note_dict:
gene_id_to_object = dict([(x.id, x) for x in reaction._genes])
for the_row in reaction_note_dict['LOCUS']:
tmp_row_dict = {}
the_row = 'LOCUS:' + the_row.lstrip('_').rstrip('#')
for the_item in the_row.split('#'):
k, v = the_item.split(':')
tmp_row_dict[k] = v
tmp_locus_id = tmp_row_dict['LOCUS']
if 'TRANSCRIPT' in tmp_row_dict:
tmp_locus_id = tmp_locus_id + \
'.' + tmp_row_dict['TRANSCRIPT']
if 'ABBREVIATION' in tmp_row_dict:
gene_id_to_object[tmp_locus_id].name = tmp_row_dict[
'ABBREVIATION']
if 'SUBSYSTEM' in reaction_note_dict:
reaction.subsystem = reaction_note_dict.pop('SUBSYSTEM')[0]
reaction.notes = reaction_note_dict
# Now, add all of the reactions to the model.
cobra_model.id = sbml_model.getId()
# Populate the compartment list - This will be done based on
# cobra.Metabolites in cobra.Reactions in the future.
cobra_model.compartments = compartment_dict
cobra_model.add_reactions(cobra_reaction_list)
set_objective(cobra_model, coefficients)
return cobra_model
示例3: from_mat_struct
# 需要导入模块: from cobra.core import Reaction [as 别名]
# 或者: from cobra.core.Reaction import subsystem [as 别名]
def from_mat_struct(mat_struct, model_id=None, inf=inf):
"""create a model from the COBRA toolbox struct
The struct will be a dict read in by scipy.io.loadmat
"""
m = mat_struct
if m.dtype.names is None:
raise ValueError("not a valid mat struct")
if not {"rxns", "mets", "S", "lb", "ub"} <= set(m.dtype.names):
raise ValueError("not a valid mat struct")
if "c" in m.dtype.names:
c_vec = m["c"][0, 0]
else:
c_vec = None
warn("objective vector 'c' not found")
model = Model()
if model_id is not None:
model.id = model_id
elif "description" in m.dtype.names:
description = m["description"][0, 0][0]
if not isinstance(description, string_types) and len(description) > 1:
model.id = description[0]
warn("Several IDs detected, only using the first.")
else:
model.id = description
else:
model.id = "imported_model"
for i, name in enumerate(m["mets"][0, 0]):
new_metabolite = Metabolite()
new_metabolite.id = str(name[0][0])
if all(var in m.dtype.names for var in
['metComps', 'comps', 'compNames']):
comp_index = m["metComps"][0, 0][i][0] - 1
new_metabolite.compartment = m['comps'][0, 0][comp_index][0][0]
if new_metabolite.compartment not in model.compartments:
comp_name = m['compNames'][0, 0][comp_index][0][0]
model.compartments[new_metabolite.compartment] = comp_name
else:
new_metabolite.compartment = _get_id_compartment(new_metabolite.id)
if new_metabolite.compartment not in model.compartments:
model.compartments[
new_metabolite.compartment] = new_metabolite.compartment
try:
new_metabolite.name = str(m["metNames"][0, 0][i][0][0])
except (IndexError, ValueError):
pass
try:
new_metabolite.formula = str(m["metFormulas"][0][0][i][0][0])
except (IndexError, ValueError):
pass
try:
new_metabolite.charge = float(m["metCharge"][0, 0][i][0])
int_charge = int(new_metabolite.charge)
if new_metabolite.charge == int_charge:
new_metabolite.charge = int_charge
except (IndexError, ValueError):
pass
model.add_metabolites([new_metabolite])
new_reactions = []
coefficients = {}
for i, name in enumerate(m["rxns"][0, 0]):
new_reaction = Reaction()
new_reaction.id = str(name[0][0])
new_reaction.lower_bound = float(m["lb"][0, 0][i][0])
new_reaction.upper_bound = float(m["ub"][0, 0][i][0])
if isinf(new_reaction.lower_bound) and new_reaction.lower_bound < 0:
new_reaction.lower_bound = -inf
if isinf(new_reaction.upper_bound) and new_reaction.upper_bound > 0:
new_reaction.upper_bound = inf
if c_vec is not None:
coefficients[new_reaction] = float(c_vec[i][0])
try:
new_reaction.gene_reaction_rule = str(m['grRules'][0, 0][i][0][0])
except (IndexError, ValueError):
pass
try:
new_reaction.name = str(m["rxnNames"][0, 0][i][0][0])
except (IndexError, ValueError):
pass
try:
new_reaction.subsystem = str(m['subSystems'][0, 0][i][0][0])
except (IndexError, ValueError):
pass
new_reactions.append(new_reaction)
model.add_reactions(new_reactions)
set_objective(model, coefficients)
coo = scipy_sparse.coo_matrix(m["S"][0, 0])
for i, j, v in zip(coo.row, coo.col, coo.data):
model.reactions[j].add_metabolites({model.metabolites[i]: v})
return model