当前位置: 首页>>代码示例>>Python>>正文


Python Reaction.build_reaction_from_string方法代码示例

本文整理汇总了Python中cobra.core.Reaction.build_reaction_from_string方法的典型用法代码示例。如果您正苦于以下问题:Python Reaction.build_reaction_from_string方法的具体用法?Python Reaction.build_reaction_from_string怎么用?Python Reaction.build_reaction_from_string使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在cobra.core.Reaction的用法示例。


在下文中一共展示了Reaction.build_reaction_from_string方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_reverse_reaction

# 需要导入模块: from cobra.core import Reaction [as 别名]
# 或者: from cobra.core.Reaction import build_reaction_from_string [as 别名]
def test_reverse_reaction():
    model = Model()
    reaction = Reaction('AB')
    model.add_reaction(reaction)
    reaction.build_reaction_from_string('a --> b')
    _reverse_reaction(reaction)
    assert reaction.reaction == 'b <-- a'
开发者ID:SBRG,项目名称:ome,代码行数:9,代码来源:test_parse.py

示例2: test_gapfilling

# 需要导入模块: from cobra.core import Reaction [as 别名]
# 或者: from cobra.core.Reaction import build_reaction_from_string [as 别名]
    def test_gapfilling(self, salmonella):
        m = Model()
        m.add_metabolites([Metabolite(m_id) for m_id in ["a", "b", "c"]])
        exa = Reaction("EX_a")
        exa.add_metabolites({m.metabolites.a: 1})
        b2c = Reaction("b2c")
        b2c.add_metabolites({m.metabolites.b: -1, m.metabolites.c: 1})
        dmc = Reaction("DM_c")
        dmc.add_metabolites({m.metabolites.c: -1})
        m.add_reactions([exa, b2c, dmc])
        m.objective = 'DM_c'

        universal = Model()
        a2b = Reaction("a2b")
        a2d = Reaction("a2d")
        universal.add_reactions([a2b, a2d])
        a2b.build_reaction_from_string("a --> b", verbose=False)
        a2d.build_reaction_from_string("a --> d", verbose=False)

        # # GrowMatch
        # result = gapfilling.growMatch(m, universal)[0]
        result = gapfilling.gapfill(m, universal)[0]
        assert len(result) == 1
        assert result[0].id == "a2b"

        # # SMILEY
        # result = gapfilling.SMILEY(m, "b", universal)[0]
        with m:
            m.objective = m.add_boundary(m.metabolites.b, type='demand')
            result = gapfilling.gapfill(m, universal)[0]
            assert len(result) == 1
            assert result[0].id == "a2b"

        # # 2 rounds of GrowMatch with exchange reactions
        # result = gapfilling.growMatch(m, None, ex_rxns=True, iterations=2)
        result = gapfilling.gapfill(m, None, exchange_reactions=True,
                                    iterations=2)
        assert len(result) == 2
        assert len(result[0]) == 1
        assert len(result[1]) == 1
        assert {i[0].id for i in result} == {"EX_b", "EX_c"}

        # somewhat bigger model
        universal = Model("universal_reactions")
        with salmonella as model:
            for i in [i.id for i in model.metabolites.f6p_c.reactions]:
                reaction = model.reactions.get_by_id(i)
                universal.add_reactions([reaction.copy()])
                model.remove_reactions([reaction])
            gf = gapfilling.GapFiller(model, universal,
                                      penalties={'TKT2': 1e3},
                                      demand_reactions=False)
            solution = gf.fill()
            assert 'TKT2' not in {r.id for r in solution[0]}
            assert gf.validate(solution[0])
开发者ID:jlerman44,项目名称:cobrapy_main,代码行数:57,代码来源:test_flux_analysis.py

示例3: test_custom_hashes

# 需要导入模块: from cobra.core import Reaction [as 别名]
# 或者: from cobra.core.Reaction import build_reaction_from_string [as 别名]
def test_custom_hashes():
    # These hashes are generated from old IDs in models (in reaction strings),
    # and they match to these corrected BiGG reaction IDs
    cases = [
        ('39b5f90a1919aef07473e2f835ce63af', 'EX_frmd_e', 'foam_e <=>'),
        ('92f1047c72db0a36413d822863be514e', 'EX_phllqne_e', 'phyQ_e <=>'),
    ]
    model = Model()
    for reaction_hash, bigg_id, reaction_string in cases:
        reaction = Reaction(bigg_id)
        model.add_reaction(reaction)
        reaction.build_reaction_from_string(reaction_string)
        lookup_dict = {m.id: m.id for m in model.metabolites}
        assert hash_reaction(reaction, lookup_dict) == reaction_hash
开发者ID:SBRG,项目名称:ome,代码行数:16,代码来源:test_parse.py

示例4: test_gapfilling

# 需要导入模块: from cobra.core import Reaction [as 别名]
# 或者: from cobra.core.Reaction import build_reaction_from_string [as 别名]
    def test_gapfilling(self):
        try:
            get_solver_name(mip=True)
        except SolverNotFound:
            pytest.skip("no MILP solver found")
        m = Model()
        m.add_metabolites(map(Metabolite, ["a", "b", "c"]))
        r = Reaction("EX_A")
        m.add_reaction(r)
        r.add_metabolites({m.metabolites.a: 1})
        r = Reaction("r1")
        m.add_reaction(r)
        r.add_metabolites({m.metabolites.b: -1, m.metabolites.c: 1})
        r = Reaction("DM_C")
        m.add_reaction(r)
        r.add_metabolites({m.metabolites.c: -1})
        r.objective_coefficient = 1

        U = Model()
        r = Reaction("a2b")
        U.add_reaction(r)
        r.build_reaction_from_string("a --> b", verbose=False)
        r = Reaction("a2d")
        U.add_reaction(r)
        r.build_reaction_from_string("a --> d", verbose=False)

        # GrowMatch
        result = gapfilling.growMatch(m, U)[0]
        assert len(result) == 1
        assert result[0].id == "a2b"
        # SMILEY
        result = gapfilling.SMILEY(m, "b", U)[0]
        assert len(result) == 1
        assert result[0].id == "a2b"

        # 2 rounds of GrowMatch with exchange reactions
        result = gapfilling.growMatch(m, None, ex_rxns=True, iterations=2)
        assert len(result) == 2
        assert len(result[0]) == 1
        assert len(result[1]) == 1
        assert {i[0].id for i in result} == {"SMILEY_EX_b", "SMILEY_EX_c"}
开发者ID:jeicher,项目名称:cobrapy,代码行数:43,代码来源:test_flux_analysis.py

示例5: test_gapfilling

# 需要导入模块: from cobra.core import Reaction [as 别名]
# 或者: from cobra.core.Reaction import build_reaction_from_string [as 别名]
def test_gapfilling(salmonella):
    """Test Gapfilling."""
    m = Model()
    m.add_metabolites([Metabolite(m_id) for m_id in ["a", "b", "c"]])
    exa = Reaction("EX_a")
    exa.add_metabolites({m.metabolites.a: 1})
    b2c = Reaction("b2c")
    b2c.add_metabolites({m.metabolites.b: -1, m.metabolites.c: 1})
    dmc = Reaction("DM_c")
    dmc.add_metabolites({m.metabolites.c: -1})
    m.add_reactions([exa, b2c, dmc])
    m.objective = 'DM_c'

    universal = Model()
    a2b = Reaction("a2b")
    a2d = Reaction("a2d")
    universal.add_reactions([a2b, a2d])
    a2b.build_reaction_from_string("a --> b", verbose=False)
    a2d.build_reaction_from_string("a --> d", verbose=False)

    # # GrowMatch
    # result = gapfilling.growMatch(m, universal)[0]
    result = gapfill(m, universal)[0]
    assert len(result) == 1
    assert result[0].id == "a2b"

    # # SMILEY
    # result = gapfilling.SMILEY(m, "b", universal)[0]
    with m:
        m.objective = m.add_boundary(m.metabolites.b, type='demand')
        result = gapfill(m, universal)[0]
        assert len(result) == 1
        assert result[0].id == "a2b"

    # # 2 rounds of GrowMatch with exchange reactions
    # result = gapfilling.growMatch(m, None, ex_rxns=True, iterations=2)
    result = gapfill(m, None, exchange_reactions=True,
                     iterations=2)
    assert len(result) == 2
    assert len(result[0]) == 1
    assert len(result[1]) == 1
    assert {i[0].id for i in result} == {"EX_b", "EX_c"}

    # # Gapfilling solution adds metabolites not present in original model
    # test for when demand = T
    # a demand reaction must be added to clear new metabolite
    universal_noDM = Model()
    a2b = Reaction("a2b")
    universal_noDM.add_reactions([a2b])
    a2b.build_reaction_from_string("a --> b + d", verbose=False)
    result = gapfill(m, universal_noDM,
                     exchange_reactions=False,
                     demand_reactions=True)[0]
    # add reaction a2b and demand reaction to clear met d
    assert len(result) == 2
    assert "a2b" in [x.id for x in result]

    # test for when demand = False
    # test for when metabolites are added to the model and
    # must be cleared by other reactions in universal model
    # (i.e. not necessarily a demand reaction)
    universal_withDM = universal_noDM.copy()
    d_dm = Reaction("d_dm")
    universal_withDM.add_reactions([d_dm])
    d_dm.build_reaction_from_string("d -->", verbose=False)
    result = gapfill(m, universal_withDM,
                     exchange_reactions=False,
                     demand_reactions=False)[0]
    assert len(result) == 2
    assert "a2b" in [x.id for x in result]

    # somewhat bigger model
    universal = Model("universal_reactions")
    with salmonella as model:
        for i in [i.id for i in model.metabolites.f6p_c.reactions]:
            reaction = model.reactions.get_by_id(i)
            universal.add_reactions([reaction.copy()])
            model.remove_reactions([reaction])
        gf = GapFiller(model, universal,
                       penalties={'TKT2': 1e3},
                       demand_reactions=False)
        solution = gf.fill()
        assert 'TKT2' not in {r.id for r in solution[0]}
        assert gf.validate(solution[0])
开发者ID:opencobra,项目名称:cobrapy,代码行数:86,代码来源:test_gapfilling.py


注:本文中的cobra.core.Reaction.build_reaction_from_string方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。