当前位置: 首页>>代码示例>>Python>>正文


Python cobra.Model类代码示例

本文整理汇总了Python中cobra.Model的典型用法代码示例。如果您正苦于以下问题:Python Model类的具体用法?Python Model怎么用?Python Model使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了Model类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_inequality

 def test_inequality(self):
     # The space enclosed by the constraints is a 2D triangle with
     # vertexes as (3, 0), (1, 2), and (0, 1)
     solver = self.solver
     # c1 encodes y - x > 1 ==> y > x - 1
     # c2 encodes y + x < 3 ==> y < 3 - x
     c1 = Metabolite("c1")
     c2 = Metabolite("c2")
     x = Reaction("x")
     x.lower_bound = 0
     y = Reaction("y")
     y.lower_bound = 0
     x.add_metabolites({c1: -1, c2: 1})
     y.add_metabolites({c1: 1, c2: 1})
     c1._bound = 1
     c1._constraint_sense = "G"
     c2._bound = 3
     c2._constraint_sense = "L"
     m = Model()
     m.add_reactions([x, y])
     # test that optimal values are at the vertices
     m.objective = "x"
     self.assertAlmostEqual(solver.solve(m).f, 1.0)
     self.assertAlmostEqual(solver.solve(m).x_dict["y"], 2.0)
     m.objective = "y"
     self.assertAlmostEqual(solver.solve(m).f, 3.0)
     self.assertAlmostEqual(solver.solve(m, objective_sense="minimize").f,
                            1.0)
开发者ID:JuBra,项目名称:cobrapy,代码行数:28,代码来源:solvers.py

示例2: test_solve_mip

 def test_solve_mip(self):
     solver = self.solver
     if not hasattr(solver, "_SUPPORTS_MILP") or not solver._SUPPORTS_MILP:
         self.skipTest("no milp support")
     cobra_model = Model('MILP_implementation_test')
     constraint = Metabolite("constraint")
     constraint._bound = 2.5
     x = Reaction("x")
     x.lower_bound = 0.
     x.objective_coefficient = 1.
     x.add_metabolites({constraint: 2.5})
     y = Reaction("y")
     y.lower_bound = 0.
     y.objective_coefficient = 1.
     y.add_metabolites({constraint: 1.})
     cobra_model.add_reactions([x, y])
     float_sol = solver.solve(cobra_model)
     # add an integer constraint
     y.variable_kind = "integer"
     int_sol = solver.solve(cobra_model)
     self.assertAlmostEqual(float_sol.f, 2.5)
     self.assertAlmostEqual(float_sol.x_dict["y"], 2.5)
     self.assertEqual(int_sol.status, "optimal")
     self.assertAlmostEqual(int_sol.f, 2.2)
     self.assertAlmostEqual(int_sol.x_dict["y"], 2.0)
开发者ID:JuBra,项目名称:cobrapy,代码行数:25,代码来源:solvers.py

示例3: test_model_history

def test_model_history(tmp_path):
    """Testing reading and writing of ModelHistory."""
    model = Model("test")
    model._sbml = {
        "creators": [{
            "familyName": "Mustermann",
            "givenName": "Max",
            "organisation": "Muster University",
            "email": "[email protected]",
        }]
    }

    sbml_path = join(str(tmp_path), "test.xml")
    with open(sbml_path, "w") as f_out:
        write_sbml_model(model, f_out)

    with open(sbml_path, "r") as f_in:
        model2 = read_sbml_model(f_in)

    assert "creators" in model2._sbml
    assert len(model2._sbml["creators"]) is 1
    c = model2._sbml["creators"][0]
    assert c["familyName"] == "Mustermann"
    assert c["givenName"] == "Max"
    assert c["organisation"] == "Muster University"
    assert c["email"] == "[email protected]"
开发者ID:opencobra,项目名称:cobrapy,代码行数:26,代码来源:test_sbml.py

示例4: TestCobraSolver

class TestCobraSolver(TestCase):
    def setUp(self):
        self.model = create_test_model()
        initialize_growth_medium(self.model, "MgM")
        self.old_solution = 0.320064
        self.infeasible_model = Model()
        metabolite_1 = Metabolite("met1")
        # metabolite_2 = Metabolite("met2")
        reaction_1 = Reaction("rxn1")
        reaction_2 = Reaction("rxn2")
        reaction_1.add_metabolites({metabolite_1: 1})
        reaction_2.add_metabolites({metabolite_1: 1})
        reaction_1.lower_bound = 1
        reaction_2.upper_bound = 2
        self.infeasible_model.add_reactions([reaction_1, reaction_2])
开发者ID:npg115,项目名称:cobrapy,代码行数:15,代码来源:solvers.py

示例5: test_change_coefficient

 def test_change_coefficient(self):
     solver = self.solver
     c = Metabolite("c")
     c._bound = 6
     x = Reaction("x")
     x.lower_bound = 1.
     y = Reaction("y") 
     y.lower_bound = 0.
     x.add_metabolites({c: 1})
     #y.add_metabolites({c: 1})
     z = Reaction("z")
     z.add_metabolites({c: 1})
     z.objective_coefficient = 1
     m = Model("test_model")
     m.add_reactions([x, y, z])
     # change an existing coefficient
     lp = solver.create_problem(m)
     solver.solve_problem(lp)
     sol1 = solver.format_solution(lp, m)
     solver.change_coefficient(lp, 0, 0, 2)
     solver.solve_problem(lp)
     sol2 = solver.format_solution(lp, m)
     self.assertAlmostEqual(sol1.f, 5.0)
     self.assertAlmostEqual(sol2.f, 4.0)
     # change a new coefficient
     z.objective_coefficient = 0.
     y.objective_coefficient = 1.
     lp = solver.create_problem(m)
     solver.change_coefficient(lp, 0, 1, 2)
     solver.solve_problem(lp)
     solution = solver.format_solution(lp, m)
     self.assertAlmostEqual(solution.x_dict["y"], 2.5)
开发者ID:choicy3,项目名称:cobrapy,代码行数:32,代码来源:solvers.py

示例6: minimized_shuffle

def minimized_shuffle(small_model):
    model = small_model.copy()
    chosen = sample(list(set(model.reactions) - set(model.exchanges)), 10)
    new = Model("minimized_shuffle")
    new.add_reactions(chosen)
    LOGGER.debug("'%s' has %d metabolites, %d reactions, and %d genes.",
                 new.id, new.metabolites, new.reactions, new.genes)
    return new
开发者ID:cdiener,项目名称:cobrapy,代码行数:8,代码来源:test_io_order.py

示例7: gapfillfunc

def gapfillfunc(model, database, runs):
    """ This function gapfills the model using the growMatch algorithm that is built into cobrapy

    Returns a dictionary which contains the pertinent information about the gapfilled model such as
    the reactions added, the major ins and outs of the system and the objective value of the gapfilled
    model.
    This function calls on two other functions sort_and_deduplicate to assure the uniqueness of the solutions
    and findInsAndOuts to find major ins and outs of the model when gapfilled when certain reactions
    Args:
        model: a model in SBML format
        database: an external database database of reactions to be used for gapfilling
        runs: integer number of iterations the gapfilling algorithm will run through
    """
    # Read model from SBML file and create Universal model to add reactions to
    func_model = create_cobra_model_from_sbml_file(model)
    Universal = Model("Universal Reactions")
    f = open(database, 'r')
    next(f)
    rxn_dict = {}
    # Creates a dictionary of the reactions from the tab delimited database, storing their ID and the reaction string
    for line in f:
        rxn_items = line.split('\t')
        rxn_dict[rxn_items[0]] = rxn_items[6], rxn_items[1]
    # Adds the reactions from the above dictionary to the Universal model
    for rxnName in rxn_dict.keys():
        rxn = Reaction(rxnName)
        Universal.add_reaction(rxn)
        rxn.reaction = rxn_dict[rxnName][0]
        rxn.name = rxn_dict[rxnName][1]

    # Runs the growMatch algorithm filling gaps from the Universal model
    result = flux_analysis.growMatch(func_model, Universal, iterations=runs)
    resultShortened = sort_and_deduplicate(uniq(result))
    rxns_added = {}
    rxn_met_list = []
    print resultShortened
    for x in range(len(resultShortened)):
        func_model_test = deepcopy(func_model)
        # print func_model_test.optimize().f
        for i in range(len(resultShortened[x])):
            addID = resultShortened[x][i].id
            rxn = Reaction(addID)
            func_model_test.add_reaction(rxn)
            rxn.reaction = resultShortened[x][i].reaction
            rxn.reaction = re.sub('\+ dummy\S+', '', rxn.reaction)
            rxn.name = resultShortened[x][i].name
            mets = re.findall('cpd\d{5}_c0|cpd\d{5}_e0', rxn.reaction)
            for met in mets:
                y = func_model_test.metabolites.get_by_id(met)
                rxn_met_list.append(y.name)
        obj_value = func_model_test.optimize().f
        fluxes = findInsAndOuts(func_model_test)
        sorted_outs = fluxes[0]
        sorted_ins = fluxes[1]
        rxns_added[x] = resultShortened[x], obj_value, sorted_ins, sorted_outs, rxn_met_list
        rxn_met_list = []
    return rxns_added
开发者ID:amprince13,项目名称:SystemsBio,代码行数:57,代码来源:gapFillFunction.py

示例8: tiny_toy_model

def tiny_toy_model():
    tiny = Model("Toy Model")
    m1 = Metabolite("M1")
    d1 = Reaction("ex1")
    d1.add_metabolites({m1: -1})
    d1.upper_bound = 0
    d1.lower_bound = -1000
    tiny.add_reactions([d1])
    tiny.objective = 'ex1'
    return tiny
开发者ID:opencobra,项目名称:cobrapy,代码行数:10,代码来源:conftest.py

示例9: test_quadratic

 def test_quadratic(self):
     solver = self.solver
     if not hasattr(solver, "set_quadratic_objective"):
         self.skipTest("no qp support")
     c = Metabolite("c")
     c._bound = 2
     x = Reaction("x")
     x.objective_coefficient = -0.5
     x.lower_bound = 0.
     y = Reaction("y")
     y.objective_coefficient = -0.5
     y.lower_bound = 0.
     x.add_metabolites({c: 1})
     y.add_metabolites({c: 1})
     m = Model()
     m.add_reactions([x, y])
     lp = self.solver.create_problem(m)
     quadratic_obj = scipy.sparse.eye(2) * 2
     solver.set_quadratic_objective(lp, quadratic_obj)
     solver.solve_problem(lp, objective_sense="minimize")
     solution = solver.format_solution(lp, m)
     self.assertEqual(solution.status, "optimal")
     # Respecting linear objectives also makes the objective value 1.
     self.assertAlmostEqual(solution.f, 1.)
     self.assertAlmostEqual(solution.x_dict["y"], 1.)
     self.assertAlmostEqual(solution.x_dict["y"], 1.)
     # When the linear objectives are removed the objective value is 2.
     solver.change_variable_objective(lp, 0, 0.)
     solver.change_variable_objective(lp, 1, 0.)
     solver.solve_problem(lp, objective_sense="minimize")
     solution = solver.format_solution(lp, m)
     self.assertEqual(solution.status, "optimal")
     self.assertAlmostEqual(solution.f, 2.)
     # test quadratic from solve function
     solution = solver.solve(m, quadratic_component=quadratic_obj,
                             objective_sense="minimize")
     self.assertEqual(solution.status, "optimal")
     self.assertAlmostEqual(solution.f, 1.)
     c._bound = 6
     z = Reaction("z")
     x.objective_coefficient = 0.
     y.objective_coefficient = 0.
     z.lower_bound = 0.
     z.add_metabolites({c: 1})
     m.add_reaction(z)
     solution = solver.solve(m, quadratic_component=scipy.sparse.eye(3),
                             objective_sense="minimize")
     # should be 12 not 24 because 1/2 (V^T Q V)
     self.assertEqual(solution.status, "optimal")
     self.assertAlmostEqual(solution.f, 6)
     self.assertAlmostEqual(solution.x_dict["x"], 2, places=6)
     self.assertAlmostEqual(solution.x_dict["y"], 2, places=6)
     self.assertAlmostEqual(solution.x_dict["z"], 2, places=6)
开发者ID:JuBra,项目名称:cobrapy,代码行数:53,代码来源:solvers.py

示例10: test_remove_breaks

 def test_remove_breaks(self):
     model = Model("test model")
     A = Metabolite("A")
     r = Reaction("r")
     r.add_metabolites({A: -1})
     r.lower_bound = -1000
     r.upper_bound = 1000
     model.add_reaction(r)
     convert_to_irreversible(model)
     model.remove_reactions(["r"])
     with pytest.raises(KeyError):
         revert_to_reversible(model)
开发者ID:cdiener,项目名称:corda,代码行数:12,代码来源:test_util.py

示例11: convert_to_cobra_model

def convert_to_cobra_model(the_network):
    """ Take a generic NAMpy model and convert to
    a COBRA model.  The model is assumed to be monopartite.
    You need a functional COBRApy for this.

    Arguments:
     the_network

    kwargs:
     flux_bounds


    """
    continue_flag = True
    try:
        from cobra import Model, Reaction, Metabolite
    except:
        print 'This function requires a functional COBRApy, exiting ...'

    if continue_flag:
        __default_objective_coefficient = 0
        
        if 'flux_bounds' in kwargs:
            flux_bounds = kwargs['flux_bounds'] 
        else:
            flux_bounds = len(the_nodes)

        metabolite_dict = {}
        for the_node in the_network.nodetypes[0].nodes: 
            the_metabolite = Metabolite(the_node.id)
            metabolite_dict.update({the_node.id: the_metabolite})

        cobra_reaction_list = []
        for the_edge in the_network.edges:
            the_reaction = Reaction(the_edge.id)
            cobra_reaction_list.append(the_reaction)
            the_reaction.upper_bound = flux_bounds
            the_reaction.lower_bound = -1 * flux_bounds
            cobra_metabolites = {}
            the_metabolite_id_1 = the_edge._nodes[0].id
            the_metabolite_id_2 = the_edge._nodes[1].id
            cobra_metabolites[metabolite_dict[the_metabolite_id_1]] = 1.
            cobra_metabolites[metabolite_dict[the_metabolite_id_2]] = -1.
            reaction.add_metabolites(cobra_metabolites)
            reaction.objective_coefficient = __default_objective_coefficient

        cobra_model = Model(model_id)
        cobra_model.add_reactions(cobra_reaction_list)

        return cobra_model
    else:
        return None
开发者ID:hostviralnetworks,项目名称:nampy,代码行数:52,代码来源:cobramodels.py

示例12: test_loopless

 def test_loopless(self):
     try:
         solver = get_solver_name(mip=True)
     except:
         self.skipTest("no MILP solver found")
     test_model = Model()
     test_model.add_metabolites(Metabolite("A"))
     test_model.add_metabolites(Metabolite("B"))
     test_model.add_metabolites(Metabolite("C"))
     EX_A = Reaction("EX_A")
     EX_A.add_metabolites({test_model.metabolites.A: 1})
     DM_C = Reaction("DM_C")
     DM_C.add_metabolites({test_model.metabolites.C: -1})
     v1 = Reaction("v1")
     v1.add_metabolites({test_model.metabolites.A: -1, test_model.metabolites.B: 1})
     v2 = Reaction("v2")
     v2.add_metabolites({test_model.metabolites.B: -1, test_model.metabolites.C: 1})
     v3 = Reaction("v3")
     v3.add_metabolites({test_model.metabolites.C: -1, test_model.metabolites.A: 1})
     DM_C.objective_coefficient = 1
     test_model.add_reactions([EX_A, DM_C, v1, v2, v3])
     feasible_sol = construct_loopless_model(test_model).optimize()
     v3.lower_bound = 1
     infeasible_sol = construct_loopless_model(test_model).optimize()
     self.assertEqual(feasible_sol.status, "optimal")
     self.assertEqual(infeasible_sol.status, "infeasible")
开发者ID:gregmedlock,项目名称:cobrapy,代码行数:26,代码来源:flux_analysis.py

示例13: test_gene_knockout_computation

 def test_gene_knockout_computation(self):
     cobra_model = self.model
     delete_model_genes = delete.delete_model_genes
     get_removed = lambda m: {x.id for x in m._trimmed_reactions}
     gene_list = ['STM1067', 'STM0227']
     dependent_reactions = {'3HAD121', '3HAD160', '3HAD80', '3HAD140',
                            '3HAD180', '3HAD100', '3HAD181','3HAD120',
                            '3HAD60', '3HAD141', '3HAD161', 'T2DECAI',
                            '3HAD40'}
     delete_model_genes(cobra_model, gene_list)
     self.assertEqual(get_removed(cobra_model), dependent_reactions)
     # cumulative
     delete_model_genes(cobra_model, ["STM4221"],
                        cumulative_deletions=True)
     dependent_reactions.add('PGI')
     self.assertEqual(get_removed(cobra_model), dependent_reactions)
     # non-cumulative
     delete_model_genes(cobra_model, ["STM4221"],
                        cumulative_deletions=False)
     self.assertEqual(get_removed(cobra_model), {'PGI'})
     # make sure on reset that the bounds are correct
     reset_bound = cobra_model.reactions.get_by_id("T2DECAI").upper_bound
     self.assertEqual(reset_bound, 1000.)
     # test computation when gene name is a subset of another
     test_model = Model()
     test_reaction_1 = Reaction("test1")
     test_reaction_1.gene_reaction_rule = "eggs or (spam and eggspam)"
     test_model.add_reaction(test_reaction_1)
     delete.delete_model_genes(test_model, ["eggs"])
     self.assertEqual(get_removed(test_model), set())
     delete_model_genes(test_model, ["spam"], cumulative_deletions=True)
     self.assertEqual(get_removed(test_model), {'test1'})
     # test computation with nested boolean expression
     delete.undelete_model_genes(test_model)
     test_reaction_1.gene_reaction_rule = \
         "g1 and g2 and (g3 or g4 or (g5 and g6))"
     delete_model_genes(test_model, ["g3"], cumulative_deletions=False)
     self.assertEqual(get_removed(test_model), set())
     delete_model_genes(test_model, ["g1"], cumulative_deletions=False)
     self.assertEqual(get_removed(test_model), {'test1'})
     delete_model_genes(test_model, ["g5"], cumulative_deletions=False)
     self.assertEqual(get_removed(test_model), set())
     delete_model_genes(test_model, ["g3", "g4", "g5"],
                        cumulative_deletions=False)
     self.assertEqual(get_removed(test_model), {'test1'})
开发者ID:albodrug,项目名称:cobrapy,代码行数:45,代码来源:flux_analysis.py

示例14: model

def model():
    A = Metabolite("A")
    B = Metabolite("B")
    C = Metabolite("C")
    r1 = Reaction("r1")
    r1.add_metabolites({A: -1, C: 1})
    r2 = Reaction("r2")
    r2.add_metabolites({B: -1, C: 1})
    r3 = Reaction("EX_A")
    r3.add_metabolites({A: 1})
    r4 = Reaction("EX_B")
    r4.add_metabolites({B: 1})
    r5 = Reaction("EX_C")
    r5.add_metabolites({C: -1})
    mod = Model("test model")
    mod.add_reactions([r1, r2, r3, r4, r5])
    conf = {"r1": 1, "r2": -1, "EX_A": 1, "EX_B": 1, "EX_C": 1}

    return (mod, conf)
开发者ID:cdiener,项目名称:corda,代码行数:19,代码来源:test_simple.py

示例15: test_solve_mip

 def test_solve_mip(self):
     solver = self.solver
     cobra_model = Model('MILP_implementation_test')
     constraint = Metabolite("constraint")
     constraint._bound = 2.5
     x = Reaction("x")
     x.lower_bound = 0.
     x.objective_coefficient = 1.
     x.add_metabolites({constraint: 2.5})
     y = Reaction("y")
     y.lower_bound = 0.
     y.objective_coefficient = 1.
     y.add_metabolites({constraint: 1.})
     cobra_model.add_reactions([x, y])
     float_sol = solver.solve(cobra_model)
     # add an integer constraint
     y.variable_kind = "integer"
     int_sol = solver.solve(cobra_model)
     self.assertAlmostEqual(float_sol.f, 2.5)
     self.assertAlmostEqual(float_sol.x_dict["y"], 2.5)
     self.assertAlmostEqual(int_sol.f, 2.2)
     self.assertAlmostEqual(int_sol.x_dict["y"], 2.0)
开发者ID:Tavpritesh,项目名称:cobrapy,代码行数:22,代码来源:solvers.py


注:本文中的cobra.Model类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。