当前位置: 首页>>代码示例>>Python>>正文


Python CNF.mode_strict方法代码示例

本文整理汇总了Python中cnfformula.cnf.CNF.mode_strict方法的典型用法代码示例。如果您正苦于以下问题:Python CNF.mode_strict方法的具体用法?Python CNF.mode_strict怎么用?Python CNF.mode_strict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在cnfformula.cnf.CNF的用法示例。


在下文中一共展示了CNF.mode_strict方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: GraphIsomorphism

# 需要导入模块: from cnfformula.cnf import CNF [as 别名]
# 或者: from cnfformula.cnf.CNF import mode_strict [as 别名]
def GraphIsomorphism(G1, G2):
    """Graph Isomorphism formula

    The formula is the CNF encoding of the statement that two simple
    graphs G1 and G2 are isomorphic.

    Parameters
    ----------
    G1 : networkx.Graph
        an undirected graph object
    G2 : networkx.Graph
        an undirected graph object

    Returns
    -------
    A CNF formula which is satiafiable if and only if graphs G1 and G2
    are isomorphic.

    """
    F = CNF()
    F.header = "Graph Isomorphism problem between graphs " +\
               G1.name + " and " + G2.name + "\n" + F.header
    F.mode_strict()

    U=enumerate_vertices(G1)
    V=enumerate_vertices(G2)
    var = _graph_isomorphism_var

    for (u, v) in product(U,V):
        F.add_variable(var(u, v))

    # Defined on both side
    for u in U:
        F.add_clause([(True, var(u, v)) for v in V])

    for v in V:
        F.add_clause([(True, var(u, v)) for u in U])

    # Injective on both sides
    for u in U:
        for v1, v2 in combinations(V, 2):
            F.add_clause([(False, var(u, v1)),
                          (False, var(u, v2))])
    for v in V:
        for u1, u2 in combinations(U, 2):
            F.add_clause([(False, var(u1, v)),
                          (False, var(u2, v))])

    # Edge consistency
    for u1, u2 in combinations(U, 2):
        for v1, v2 in combinations(V, 2):
            if G1.has_edge(u1, u2) != G2.has_edge(v1, v2):
                F.add_clause([(False, var(u1, v1)),
                              (False, var(u2, v2))])
                F.add_clause([(False, var(u1, v2)),
                              (False, var(u2, v1))])

    return F
开发者ID:marcvinyals,项目名称:cnfgen,代码行数:60,代码来源:graphisomorphism.py

示例2: EvenColoringFormula

# 需要导入模块: from cnfformula.cnf import CNF [as 别名]
# 或者: from cnfformula.cnf.CNF import mode_strict [as 别名]
def EvenColoringFormula(G):
    """Even coloring formula

    The formula is defined on a graph :math:`G` and claims that it is
    possible to split the edges of the graph in two parts, so that
    each vertex has an equal number of incident edges in each part.

    The formula is defined on graphs where all vertices have even
    degree. The formula is satisfiable only on those graphs with an
    even number of vertices in each connected component [1]_.

    Arguments
    ---------
    G : networkx.Graph 
       a simple undirected graph where all vertices have even degree

    Raises
    ------
    ValueError
       if the graph in input has a vertex with odd degree

    Returns
    -------
    CNF object

    References
    ----------
    .. [1] Locality and Hard SAT-instances, Klas Markstrom
       Journal on Satisfiability, Boolean Modeling and Computation 2 (2006) 221-228

    """
    F = CNF()
    F.mode_strict()
    F.header = "Even coloring formula on graph " + G.name + "\n" + F.header

    def var_name(u,v):
        if u<=v:
            return 'x_{{{0},{1}}}'.format(u,v)
        else:
            return 'x_{{{0},{1}}}'.format(v,u)
    
    for (u, v) in enumerate_edges(G):
        F.add_variable(var_name(u, v))

    # Defined on both side
    for v in enumerate_vertices(G):

        if G.degree(v) % 2 == 1:
            raise ValueError("Markstrom formulas requires all vertices to have even degree.")

        edge_vars = [ var_name(u, v) for u in neighbors(G, v) ]

        F.add_exactly_half_ceil(edge_vars)   # F.add_exactly_half_floor would work the same

    return F
开发者ID:marcvinyals,项目名称:cnfgen,代码行数:57,代码来源:coloring.py

示例3: test_strict_clause_insertion

# 需要导入模块: from cnfformula.cnf import CNF [as 别名]
# 或者: from cnfformula.cnf.CNF import mode_strict [as 别名]
 def test_strict_clause_insertion(self):
     F=CNF()
     F.mode_strict()
     F.add_variable("S")
     F.add_variable("T")
     F.add_variable("U")
     self.assertTrue(len(list(F.variables()))==3)
     F.add_clause([(True,"S"),(False,"T")])
     F.add_clause([(True,"T"),(False,"U")])
     self.assertRaises(ValueError, F.add_clause,
                       [(True,"T"),(False,"V")])
开发者ID:marcvinyals,项目名称:cnfgen,代码行数:13,代码来源:test_cnfformula.py

示例4: RamseyLowerBoundFormula

# 需要导入模块: from cnfformula.cnf import CNF [as 别名]
# 或者: from cnfformula.cnf.CNF import mode_strict [as 别名]
def RamseyLowerBoundFormula(s,k,N):
    """Formula claiming that Ramsey number r(s,k) > N

    Arguments:
    - `s`: independent set size
    - `k`: clique size
    - `N`: vertices
    """

    ram=CNF()
    ram.mode_strict()

    ram.header=dedent("""\
        CNF encoding of the claim that there is a graph of %d vertices
        with no independent set of size %d and no clique of size %d
        """ % (N,s,k)) + ram.header

    #
    # One variable per edge (indices are ordered)
    #
    for edge in combinations(xrange(1,N+1),2):
        ram.add_variable('e_{{{0},{1}}}'.format(*edge))
    
    #
    # No independent set of size s
    #
    for vertex_set in combinations(xrange(1,N+1),s):
        clause=[]
        for edge in combinations(vertex_set,2):
            clause += [(True,'e_{{{0},{1}}}'.format(*edge))]
        ram.add_clause(clause)

    #
    # No clique of size k
    #
    for vertex_set in combinations(xrange(1,N+1),k):
        clause=[]
        for edge in combinations(vertex_set,2):
            clause+=[(False,'e_{{{0},{1}}}'.format(*edge))]
        ram.add_clause(clause)

    return ram
开发者ID:marcvinyals,项目名称:cnfgen,代码行数:44,代码来源:ramsey.py

示例5: TseitinFormula

# 需要导入模块: from cnfformula.cnf import CNF [as 别名]
# 或者: from cnfformula.cnf.CNF import mode_strict [as 别名]
def TseitinFormula(graph,charges=None):
    """Build a Tseitin formula based on the input graph.

    Odd charge is put on the first vertex by default, unless other
    vertices are is specified in input.

    Arguments:
    - `graph`: input graph
    - `charges': odd or even charge for each vertex
    """
    V=enumerate_vertices(graph)

    if charges==None:
        charges=[1]+[0]*(len(V)-1)             # odd charge on first vertex
    else:
        charges = [bool(c) for c in charges]   # map to boolean

    if len(charges)<len(V):
        charges=charges+[0]*(len(V)-len(charges))  # pad with even charges

    # init formula
    tse=CNF()
    edgename = { }
    
    for (u,v) in sorted(graph.edges(),key=sorted):
        edgename[(u,v)] =  "E_{{{0},{1}}}".format(u,v)
        edgename[(v,u)] =  "E_{{{0},{1}}}".format(u,v)
        tse.add_variable(edgename[(u,v)])

    tse.mode_strict()
    # add constraints
    for v,charge in zip(V,charges):
        
        # produce all clauses and save half of them
        names = [ edgename[(u,v)] for u in neighbors(graph,v) ]
        tse.add_parity(names,charge)

    return tse
开发者ID:marcvinyals,项目名称:cnfgen,代码行数:40,代码来源:tseitin.py

示例6: GraphColoringFormula

# 需要导入模块: from cnfformula.cnf import CNF [as 别名]
# 或者: from cnfformula.cnf.CNF import mode_strict [as 别名]
def GraphColoringFormula(G,colors,functional=True):
    """Generates the clauses for colorability formula

    The formula encodes the fact that the graph :math:`G` has a coloring
    with color set ``colors``. This means that it is possible to
    assign one among the elements in ``colors``to that each vertex of
    the graph such that no two adjacent vertices get the same color.

    Parameters
    ----------
    G : networkx.Graph
        a simple undirected graph
    colors : list or positive int
        a list of colors or a number of colors

    Returns
    -------
    CNF
       the CNF encoding of the coloring problem on graph ``G``

    """
    col=CNF()
    col.mode_strict()

    if isinstance(colors,int) and colors>=0:
        colors = range(1,colors+1)
    
    if not isinstance(list, collections.Iterable):
        ValueError("Parameter \"colors\" is expected to be a iterable")
    
    # Describe the formula
    name="graph colorability"
    
    if hasattr(G,'name'):
        col.header=name+" of graph:\n"+G.name+".\n\n"+col.header
    else:
        col.header=name+".\n\n"+col.header

    # Fix the vertex order
    V=enumerate_vertices(G)

    # Create the variables
    for vertex in V:
        for color in colors:
            col.add_variable('x_{{{0},{1}}}'.format(vertex,color))
        
    # Each vertex has a color
    for vertex in V:
        clause = []
        for color in colors:
            clause += [(True,'x_{{{0},{1}}}'.format(vertex,color))]
        col.add_clause(clause)
        
        # unique color per vertex
        if functional:
            for (c1,c2) in combinations(colors,2):
                col.add_clause([
                    (False,'x_{{{0},{1}}}'.format(vertex,c1)),
                    (False,'x_{{{0},{1}}}'.format(vertex,c2))])

    # This is a legal coloring
    for (v1,v2) in enumerate_edges(G):
        for c in colors:
            col.add_clause([
                (False,'x_{{{0},{1}}}'.format(v1,c)),
                (False,'x_{{{0},{1}}}'.format(v2,c))])
            
    return col
开发者ID:marcvinyals,项目名称:cnfgen,代码行数:70,代码来源:coloring.py

示例7: RandomKCNF

# 需要导入模块: from cnfformula.cnf import CNF [as 别名]
# 或者: from cnfformula.cnf.CNF import mode_strict [as 别名]
def RandomKCNF(k, n, m, seed=None, planted_assignments=[]):
    """Build a random k-CNF

    Sample :math:`m` clauses over :math:`n` variables, each of width
    :math:`k`, uniformly at random. The sampling is done without
    repetition, meaning that whenever a randomly picked clause is
    already in the CNF, it is sampled again.

    Parameters
    ----------
    k : int
       width of each clause

    n : int
       number of variables to choose from. The resulting CNF object
       will contain n variables even if some are not mentioned in the clauses.

    m : int
       number of clauses to generate

    seed : hashable object
       seed of the random generator

    planted_assignments : iterable(dict), optional 
       a set of total/partial assigments such that all clauses in the formula 
       will be satisfied by all of them.

    Returns
    -------
    a CNF object

    Raises
    ------
    ValueError
        when some paramenter is negative, or when k>n.

    """
    if seed:
        random.seed(seed)


    if n<0 or m<0 or k<0:
        raise ValueError("Parameters must be non-negatives.")

    if k>n:
        raise ValueError("Clauses cannot have more {} literals.".format(n))

    F = CNF()
    F.header = "Random {}-CNF over {} variables and {} clauses\n".format(k,n,m) + F.header
    F.mode_strict()

    indices = xrange(1,n+1)
    for i in indices:
        F.add_variable('x_{0}'.format(i))
    try:
        for clause in sample_clauses(k, indices, m, planted_assignments):
            F.add_clause(list(clause))
    except ValueError:
        raise ValueError("There are fewer clauses available than the number requested")

    return F
开发者ID:marcvinyals,项目名称:cnfgen,代码行数:63,代码来源:randomformulas.py

示例8: GraphOrderingPrinciple

# 需要导入模块: from cnfformula.cnf import CNF [as 别名]
# 或者: from cnfformula.cnf.CNF import mode_strict [as 别名]
def GraphOrderingPrinciple(graph,total=False,smart=False,plant=False,knuth=0):
    """Generates the clauses for graph ordering principle

    Arguments:
    - `graph` : undirected graph
    - `total` : add totality axioms (i.e. "x < y" or "x > y")
    - `smart` : "x < y" and "x > y" are represented by a single variable (implies `total`)
    - `plant` : allow last element to be minimum (and could make the formula SAT)
    - `knuth` : Don Knuth variants 2 or 3 of the formula (anything else suppress it)
    """
    gop = CNF()
    gop.mode_strict()

    # Describe the formula
    if total or smart:
        name = "Total graph ordering principle"
    else:
        name = "Ordering principle"

    if smart:
        name = name + "(compact representation)"

    if hasattr(graph, 'name'):
        gop.header = name+"\n on graph "+graph.name+".\n\n"+gop.header
    else:
        gop.header = name+".\n\n"+gop.header


    # Fix the vertex order
    V = enumerate_vertices(graph)

    # Add variables
    iterator = combinations if smart else permutations
    for v1,v2 in iterator(V,2):
        gop.add_variable(varname(v1,v2))

    #
    # Non minimality axioms
    #

    # Clause is generated in such a way that if totality is enforces,
    # every pair occurs with a specific orientation.
    # Allow minimum on last vertex if 'plant' options.

    for med in xrange(len(V) - (plant and 1)):
        clause = []
        for lo in xrange(med):
            if graph.has_edge(V[med], V[lo]):
                clause += [(True, varname(V[lo], V[med]))]
        for hi in xrange(med+1, len(V)):
            if not graph.has_edge(V[med], V[hi]):
                continue
            elif smart:
                clause += [(False, varname(V[med], V[hi]))]
            else:
                clause += [(True, varname(V[hi], V[med]))]
        gop.add_clause(clause)

    #
    # Transitivity axiom
    #

    if len(V) >= 3:
        if smart:
            # Optimized version if smart representation of totality is used
            for (v1, v2, v3) in combinations(V, 3):

                gop.add_clause([(True,  varname(v1, v2)),
                                (True,  varname(v2, v3)),
                                (False, varname(v1, v3))])
                
                gop.add_clause([(False, varname(v1, v2)),
                                (False, varname(v2, v3)),
                                (True,  varname(v1, v3))])

        elif total:
            # With totality we still need just two axiom per triangle
            for (v1, v2, v3) in combinations(V, 3):
                
                gop.add_clause([(False, varname(v1, v2)),
                                (False, varname(v2, v3)),
                                (False, varname(v3, v1))])

                gop.add_clause([(False, varname(v1, v3)),
                                (False, varname(v3, v2)),
                                (False, varname(v2, v1))])

        else:
            for (v1, v2, v3) in permutations(V, 3):

                # knuth variants will reduce the number of
                # transitivity axioms
                if knuth == 2 and ((v2 < v1) or (v2 < v3)):
                    continue
                if knuth == 3 and ((v3 < v1) or (v3 < v2)):
                    continue

                gop.add_clause([(False, varname(v1, v2)),
                                (False, varname(v2, v3)),
                                (True,  varname(v1, v3))])
#.........这里部分代码省略.........
开发者ID:marcvinyals,项目名称:cnfgen,代码行数:103,代码来源:ordering.py

示例9: CliqueColoring

# 需要导入模块: from cnfformula.cnf import CNF [as 别名]
# 或者: from cnfformula.cnf.CNF import mode_strict [as 别名]
def CliqueColoring(n,k,c):
    r"""Clique-coloring CNF formula 

    The formula claims that a graph :math:`G` with :math:`n` vertices
    simultaneously contains a clique of size :math:`k` and a coloring
    of size :math:`c`.

    If :math:`k = c + 1` then the formula is clearly unsatisfiable,
    and it is the only known example of a formula hard for cutting
    planes proof system. [1]_

    Variables :math:`e_{u,v}` to encode the edges of the graph.
    
    Variables :math:`q_{i,v}` encode a function from :math:`[k]` to
    :math:`[n]` that represents a clique.
    
    Variables :math:`r_{v,\ell}` encode a function from :math:`[n]` to
    :math:`[c]` that represents a coloring.
     
    Parameters
    ----------
    n : number of vertices in the graph
    k : size of the clique
    c : size of the coloring

    Returns
    -------
    A CNF object

    References
    ----------
    .. [1] Pavel Pudlak.
           Lower bounds for resolution and cutting plane proofs and
           monotone computations.
           Journal of Symbolic Logic (1997)

    """

    def E(u,v):
        "Name of an edge variable"
        return 'e_{{{0},{1}}}'.format(min(u,v),max(u,v))
    
    def Q(i,v):
        "Name of an edge variable"
        return 'q_{{{0},{1}}}'.format(i,v)

    def R(v,ell):
        "Name of an coloring variable"
        return 'r_{{{0},{1}}}'.format(v,ell)
    
    formula=CNF()
    formula.mode_strict()
    formula.header="There is a graph of {0} vertices with a {1}-clique".format(n,k)+\
        " and a {0}-coloring\n\n".format(c)\
        + formula.header

    # Edge variables
    for u in range(1,n+1):
        for v in range(u+1,n+1):
            formula.add_variable(E(u,v))
    # Clique encoding variables
    for i in range(1,k+1):
        for v in range(1,n+1):
            formula.add_variable(Q(i,v))
    # Coloring encoding variables
    for v in range(1,n+1):
        for ell in range(1,c+1):
            formula.add_variable(R(v,ell))

    # some vertex is i'th member of clique
    formula.mode_strict()
    for k in range(1,k+1):
        formula.add_equal_to([Q(k,v) for v in range(1,n+1)], 1)

    # clique members are connected by edges
    for v in range(1,n+1):
        for i,j in combinations(range(1,k+1),2):
            formula.add_clause([(False, Q(i,v)), (False, Q(j,v))])
    for u,v in combinations(range(1,n+1),2):
        for i,j in permutations(range(1,k+1),2):
            formula.add_clause([(True, E(u,v)), (False, Q(i,u)), (False, Q(j,v))])

    # every vertex v has exactly one colour
    for v in range(1,n+1):
        formula.add_equal_to([R(v,ell) for ell in range(1,c+1)], 1)

    # neighbours have distinct colours
    for u,v in combinations(range(1,n+1),2):
        for ell in range(1,c+1):
            formula.add_clause([(False, E(u,v)), (False, R(u,ell)), (False, R(v,ell))])
    return formula
开发者ID:marcvinyals,项目名称:cnfgen,代码行数:93,代码来源:cliquecoloring.py

示例10: SubgraphFormula

# 需要导入模块: from cnfformula.cnf import CNF [as 别名]
# 或者: from cnfformula.cnf.CNF import mode_strict [as 别名]
def SubgraphFormula(graph,templates, symmetric=False):
    """Test whether a graph contains one of the templates.

    Given a graph :math:`G` and a sequence of template graphs
    :math:`H_1`, :math:`H_2`, ..., :math:`H_t`, the CNF formula claims
    that :math:`G` contains an isomorphic copy of at least one of the
    template graphs.

    E.g. when :math:`H_1` is the complete graph of :math:`k` vertices
    and it is the only template, the formula claims that :math:`G`
    contains a :math:`k`-clique.

    Parameters
    ----------
    graph : networkx.Graph
        a simple graph

    templates : list-like object
        a sequence of graphs.

    symmetric:
        all template graphs are symmetric wrt permutations of
        vertices. This allows some optimization in the search space of
        the assignments.

    induce: 
        force the subgraph to be induced (i.e. no additional edges are allowed)


    Returns
    -------
    a CNF object

    """

    F=CNF()
    F.mode_strict()
    
    # One of the templates is chosen to be the subgraph
    if len(templates)==0:
        return F
    elif len(templates)==1:
        selectors=[]
    elif len(templates)==2:
        selectors=['c']
    else:
        selectors=['c_{{{}}}'.format(i) for i in range(len(templates))]

    for s in selectors:
        F.add_variable(s)
        
    if len(selectors)>1:
        for cls in F.equal_to_constraint(selectors,1):
            F.add_clause( cls )

    # comment the formula accordingly
    if len(selectors)>1:
        F.header=dedent("""\
                 CNF encoding of the claim that a graph contains one among
                 a family of {0} possible subgraphs.
                 """.format(len(templates))) + F.header
    else:
        F.header=dedent("""\
                 CNF encoding of the claim that a graph contains an induced
                 copy of a subgraph.
                 """.format(len(templates)))  + F.header

    # A subgraph is chosen
    N=graph.order()
    k=max([s.order() for s in templates])

    var_name = lambda i,j: "S_{{{0},{1}}}".format(i,j)

    if symmetric:
        mapping = unary_mapping(range(k),range(N),var_name=var_name,
                                functional=True,injective=True,
                                nondecreasing=True)
    else:
        mapping = unary_mapping(range(k),range(N),var_name=var_name,
                                functional=True,injective=True,
                                nondecreasing=False)

    mapping.load_variables_to_formula(F)
    mapping.load_clauses_to_formula(F)

    # The selectors choose a template subgraph.  A mapping must map
    # edges to edges and non-edges to non-edges for the active
    # template.

    if len(templates)==1:

        activation_prefixes = [[]]

    elif len(templates)==2:

        activation_prefixes = [[(True,selectors[0])],[(False,selectors[0])]]

    else:
        activation_prefixes = [[(True,v)] for v in selectors]

#.........这里部分代码省略.........
开发者ID:marcvinyals,项目名称:cnfgen,代码行数:103,代码来源:subgraph.py


注:本文中的cnfformula.cnf.CNF.mode_strict方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。