本文整理汇总了Python中cnfformula.cnf.CNF.header方法的典型用法代码示例。如果您正苦于以下问题:Python CNF.header方法的具体用法?Python CNF.header怎么用?Python CNF.header使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cnfformula.cnf.CNF
的用法示例。
在下文中一共展示了CNF.header方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: PerfectMatchingPrinciple
# 需要导入模块: from cnfformula.cnf import CNF [as 别名]
# 或者: from cnfformula.cnf.CNF import header [as 别名]
def PerfectMatchingPrinciple(G):
"""Generates the clauses for the graph perfect matching principle.
The principle claims that there is a way to select edges to such
that all vertices have exactly one incident edge set to 1.
Parameters
----------
G : undirected graph
"""
cnf=CNF()
# Describe the formula
name="Perfect Matching Principle"
if hasattr(G,'name'):
cnf.header=name+" of graph:\n"+G.name+"\n"+cnf.header
else:
cnf.header=name+".\n"+cnf.header
def var_name(u,v):
if u<=v:
return 'x_{{{0},{1}}}'.format(u,v)
else:
return 'x_{{{0},{1}}}'.format(v,u)
# Each vertex has exactly one edge set to one.
for v in enumerate_vertices(G):
edge_vars = [var_name(u,v) for u in neighbors(G,v)]
cnf.add_equal_to(edge_vars,1)
return cnf
示例2: PerfectMatchingPrinciple
# 需要导入模块: from cnfformula.cnf import CNF [as 别名]
# 或者: from cnfformula.cnf.CNF import header [as 别名]
def PerfectMatchingPrinciple(graph):
"""Generates the clauses for the graph perfect matching principle.
The principle claims that there is a way to select edges to such
that all vertices have exactly one incident edge set to 1.
Arguments:
- `graph` : undirected graph
"""
cnf=CNF()
# Describe the formula
name="Perfect Matching Principle"
if hasattr(graph,'name'):
cnf.header=name+" of graph:\n"+graph.name+"\n"+cnf.header
else:
cnf.header=name+".\n"+cnf.header
def var_name(u,v):
if u<=v:
return 'x_{{{0},{1}}}'.format(u,v)
else:
return 'x_{{{0},{1}}}'.format(v,u)
# Each vertex has exactly one edge set to one.
for v in graph.nodes():
edge_vars = [var_name(u,v) for u in graph.adj[v]]
for cls in equal_to_constraint(edge_vars,1):
cnf.add_clause(cls)
return cnf
示例3: CountingPrinciple
# 需要导入模块: from cnfformula.cnf import CNF [as 别名]
# 或者: from cnfformula.cnf.CNF import header [as 别名]
def CountingPrinciple(M,p):
"""Generates the clauses for the counting matching principle.
The principle claims that there is a way to partition M in sets of
size p each.
Arguments:
- `M` : size of the domain
- `p` : size of each class
"""
cnf=CNF()
# Describe the formula
name="Counting Principle: {0} divided in parts of size {1}.".format(M,p)
cnf.header=name+"\n"+cnf.header
def var_name(tpl):
return "Y_{{"+",".join("{0}".format(v) for v in tpl)+"}}"
# Incidence lists
incidence=[[] for _ in range(M)]
for tpl in combinations(range(M),p):
for i in tpl:
incidence[i].append(tpl)
# Each element of the domain is in exactly one part.
for el in range(M):
edge_vars = [var_name(tpl) for tpl in incidence[el]]
cnf.add_equal_to(edge_vars,1)
return cnf
示例4: RandomKCNF
# 需要导入模块: from cnfformula.cnf import CNF [as 别名]
# 或者: from cnfformula.cnf.CNF import header [as 别名]
def RandomKCNF(k, n, m, seed=None, planted_assignments=[]):
"""Build a random k-CNF
Sample :math:`m` clauses over :math:`n` variables, each of width
:math:`k`, uniformly at random. The sampling is done without
repetition, meaning that whenever a randomly picked clause is
already in the CNF, it is sampled again.
Parameters
----------
k : int
width of each clause
n : int
number of variables to choose from. The resulting CNF object
will contain n variables even if some are not mentioned in the clauses.
m : int
number of clauses to generate
seed : hashable object
seed of the random generator
planted_assignments : iterable(dict), optional
a set of total/partial assigments such that all clauses in the formula
will be satisfied by all of them.
Returns
-------
a CNF object
Raises
------
ValueError
when some paramenter is negative, or when k>n.
"""
if seed:
random.seed(seed)
if n<0 or m<0 or k<0:
raise ValueError("Parameters must be non-negatives.")
if k>n:
raise ValueError("Clauses cannot have more {} literals.".format(n))
F = CNF()
F.header = "Random {}-CNF over {} variables and {} clauses\n".format(k,n,m) + F.header
indices = xrange(1,n+1)
for i in indices:
F.add_variable('x_{0}'.format(i))
try:
for clause in sample_clauses(k, indices, m, planted_assignments):
F.add_clause(list(clause), strict=True)
except ValueError:
raise ValueError("There are fewer clauses available than the number requested")
return F
示例5: BinaryPigeonholePrinciple
# 需要导入模块: from cnfformula.cnf import CNF [as 别名]
# 或者: from cnfformula.cnf.CNF import header [as 别名]
def BinaryPigeonholePrinciple(pigeons,holes):
"""Binary Pigeonhole Principle CNF formula
The pigeonhole principle claims that no M pigeons can sit in
N pigeonholes without collision if M>N. This formula encodes the
principle using binary strings to identify the holes.
Parameters
----------
pigeon : int
number of pigeons
holes : int
number of holes
"""
bphp=CNF()
bphp.header="Binary Pigeonhole Principle for {0} pigeons and {1} holes\n".format(pigeons,holes)\
+ bphp.header
mapping=binary_mapping(xrange(1,pigeons+1),
xrange(1,holes+1), injective = True)
bphp.mode_unchecked()
mapping.load_variables_to_formula(bphp)
mapping.load_clauses_to_formula(bphp)
bphp.mode_default()
return bphp
示例6: BinaryPigeonholePrinciple
# 需要导入模块: from cnfformula.cnf import CNF [as 别名]
# 或者: from cnfformula.cnf.CNF import header [as 别名]
def BinaryPigeonholePrinciple(pigeons,holes):
"""Binary Pigeonhole Principle CNF formula
The pigeonhole principle claims that no M pigeons can sit in
N pigeonholes without collision if M>N. This formula encodes the
principle using binary strings to identify the holes.
Parameters
----------
pigeon : int
number of pigeons
holes : int
number of holes
"""
bphp=CNF()
bphp.header="Binary Pigeonhole Principle for {0} pigeons and {1} holes\n".format(pigeons,holes)\
+ bphp.header
bphpgen=bphp.binary_mapping(xrange(1,pigeons+1), xrange(1,holes+1), injective = True)
for v in bphpgen.variables():
bphp.add_variable(v)
for c in bphpgen.clauses():
bphp.add_clause(c,strict=True)
return bphp
示例7: GraphIsomorphism
# 需要导入模块: from cnfformula.cnf import CNF [as 别名]
# 或者: from cnfformula.cnf.CNF import header [as 别名]
def GraphIsomorphism(G1, G2):
"""Graph Isomorphism formula
The formula is the CNF encoding of the statement that two simple
graphs G1 and G2 are isomorphic.
Parameters
----------
G1 : networkx.Graph
an undirected graph object
G2 : networkx.Graph
an undirected graph object
Returns
-------
A CNF formula which is satiafiable if and only if graphs G1 and G2
are isomorphic.
"""
F = CNF()
F.header = "Graph Isomorphism problem between graphs " +\
G1.name + " and " + G2.name + "\n" + F.header
F.mode_strict()
U=enumerate_vertices(G1)
V=enumerate_vertices(G2)
var = _graph_isomorphism_var
for (u, v) in product(U,V):
F.add_variable(var(u, v))
# Defined on both side
for u in U:
F.add_clause([(True, var(u, v)) for v in V])
for v in V:
F.add_clause([(True, var(u, v)) for u in U])
# Injective on both sides
for u in U:
for v1, v2 in combinations(V, 2):
F.add_clause([(False, var(u, v1)),
(False, var(u, v2))])
for v in V:
for u1, u2 in combinations(U, 2):
F.add_clause([(False, var(u1, v)),
(False, var(u2, v))])
# Edge consistency
for u1, u2 in combinations(U, 2):
for v1, v2 in combinations(V, 2):
if G1.has_edge(u1, u2) != G2.has_edge(v1, v2):
F.add_clause([(False, var(u1, v1)),
(False, var(u2, v2))])
F.add_clause([(False, var(u1, v2)),
(False, var(u2, v1))])
return F
示例8: EvenColoringFormula
# 需要导入模块: from cnfformula.cnf import CNF [as 别名]
# 或者: from cnfformula.cnf.CNF import header [as 别名]
def EvenColoringFormula(G):
"""Even coloring formula
The formula is defined on a graph :math:`G` and claims that it is
possible to split the edges of the graph in two parts, so that
each vertex has an equal number of incident edges in each part.
The formula is defined on graphs where all vertices have even
degree. The formula is satisfiable only on those graphs with an
even number of vertices in each connected component [1]_.
Arguments
---------
G : networkx.Graph
a simple undirected graph where all vertices have even degree
Raises
------
ValueError
if the graph in input has a vertex with odd degree
Returns
-------
CNF object
References
----------
.. [1] Locality and Hard SAT-instances, Klas Markstrom
Journal on Satisfiability, Boolean Modeling and Computation 2 (2006) 221-228
"""
F = CNF()
F.header = "Even coloring formula on graph " + G.name + "\n" + F.header
def var_name(u,v):
if u<=v:
return 'x_{{{0},{1}}}'.format(u,v)
else:
return 'x_{{{0},{1}}}'.format(v,u)
for (u, v) in enumerate_edges(G):
F.add_variable(var_name(u, v))
# Defined on both side
for v in enumerate_vertices(G):
if G.degree(v) % 2 == 1:
raise ValueError("Markstrom formulas requires all vertices to have even degree.")
edge_vars = [ var_name(u,v) for u in neighbors(G,v) ]
for cls in CNF.equal_to_constraint(edge_vars,
len(edge_vars)/2):
F.add_clause(cls,strict=True)
return F
示例9: build_cnf
# 需要导入模块: from cnfformula.cnf import CNF [as 别名]
# 或者: from cnfformula.cnf.CNF import header [as 别名]
def build_cnf(args):
"""Build a conjunction
Arguments:
- `args`: command line options
"""
clauses = [ [(True,"x_{}".format(i))] for i in range(args.P) ] + \
[ [(False,"y_{}".format(i))] for i in range(args.N) ]
andcnf = CNF(clauses)
andcnf.header = "Singleton clauses: {} positive and {} negative\n\n""".format(args.P,args.N) +\
andcnf.header
return andcnf
示例10: PythagoreanTriples
# 需要导入模块: from cnfformula.cnf import CNF [as 别名]
# 或者: from cnfformula.cnf.CNF import header [as 别名]
def PythagoreanTriples(N):
"""There is a Pythagorean triples free coloring on N
The formula claims that it is possible to bicolor the numbers from
1 to :math:`N` so that there is no monochromatic triplet
:math:`(x,y,z)` so that :math:`x^2+y^2=z^2`.
Parameters
----------
N : int
size of the interval
Return
------
A CNF object
Raises
------
ValueError
Parameters are not positive integers
References
----------
.. [1] M. J. Heule, O. Kullmann, and V. W. Marek.
Solving and verifying the boolean pythagorean triples problem via cube-and-conquer.
arXiv preprint arXiv:1605.00723, 2016.
"""
ptn=CNF()
ptn.header=dedent("""
It is possible to bicolor the numbers from
1 to {} so that there is no monochromatic triplets
(x,y,z) such that x^2+y^2=z^2
""".format(N)) + ptn.header
def V(i):
return "x_{{{}}}".format(i)
# Variables represent the coloring of the number
for i in xrange(1,N+1):
ptn.add_variable(V(i))
for x,y in combinations(range(1,N+1),2):
z = int(sqrt(x**2 + y**2))
if z <=N and z**2 == x**2 + y**2:
ptn.add_clause([ (True, V(x)), (True, V(y)), (True, V(z))])
ptn.add_clause([ (False,V(x)), (False,V(y)), (False,V(z))])
return ptn
示例11: PebblingFormula
# 需要导入模块: from cnfformula.cnf import CNF [as 别名]
# 或者: from cnfformula.cnf.CNF import header [as 别名]
def PebblingFormula(digraph):
"""Pebbling formula
Build a pebbling formula from the directed graph. If the graph has
an `ordered_vertices` attribute, then it is used to enumerate the
vertices (and the corresponding variables).
Arguments:
- `digraph`: directed acyclic graph.
"""
if not is_dag(digraph):
raise ValueError("Pebbling formula is defined only for directed acyclic graphs")
peb=CNF()
peb.mode_unchecked()
if hasattr(digraph,'name'):
peb.header="Pebbling formula of: "+digraph.name+"\n\n"+peb.header
else:
peb.header="Pebbling formula\n\n"+peb.header
# add variables in the appropriate order
vertices=enumerate_vertices(digraph)
position=dict((v,i) for (i,v) in enumerate(vertices))
for v in vertices:
peb.add_variable(v,description="There is a pebble on vertex ${}$".format(v))
# add the clauses
for v in vertices:
# If predecessors are pebbled the vertex must be pebbled
pred=sorted(digraph.predecessors(v),key=lambda x:position[x])
peb.add_clause([(False,p) for p in pred]+[(True,v)])
if digraph.out_degree(v)==0: #the sink
peb.add_clause([(False,v)])
return peb
示例12: RamseyLowerBoundFormula
# 需要导入模块: from cnfformula.cnf import CNF [as 别名]
# 或者: from cnfformula.cnf.CNF import header [as 别名]
def RamseyLowerBoundFormula(s,k,N):
"""Formula claiming that Ramsey number r(s,k) > N
Arguments:
- `s`: independent set size
- `k`: clique size
- `N`: vertices
"""
ram=CNF()
ram.mode_strict()
ram.header=dedent("""\
CNF encoding of the claim that there is a graph of %d vertices
with no independent set of size %d and no clique of size %d
""" % (N,s,k)) + ram.header
#
# One variable per edge (indices are ordered)
#
for edge in combinations(xrange(1,N+1),2):
ram.add_variable('e_{{{0},{1}}}'.format(*edge))
#
# No independent set of size s
#
for vertex_set in combinations(xrange(1,N+1),s):
clause=[]
for edge in combinations(vertex_set,2):
clause += [(True,'e_{{{0},{1}}}'.format(*edge))]
ram.add_clause(clause)
#
# No clique of size k
#
for vertex_set in combinations(xrange(1,N+1),k):
clause=[]
for edge in combinations(vertex_set,2):
clause+=[(False,'e_{{{0},{1}}}'.format(*edge))]
ram.add_clause(clause)
return ram
示例13: BinaryCliqueFormula
# 需要导入模块: from cnfformula.cnf import CNF [as 别名]
# 或者: from cnfformula.cnf.CNF import header [as 别名]
def BinaryCliqueFormula(G,k):
"""Test whether a graph has a k-clique.
Given a graph :math:`G` and a non negative value :math:`k`, the
CNF formula claims that :math:`G` contains a :math:`k`-clique.
This formula uses the binary encoding, in the sense that the
clique elements are indexed by strings of bits.
Parameters
----------
G : networkx.Graph
a simple graph
k : a non negative integer
clique size
Returns
-------
a CNF object
"""
F=CNF()
F.header="Binary {0}-clique formula\n".format(k) + F.header
clauses_gen=F.binary_mapping(xrange(1,k+1), G.nodes(),
injective = True,
nondecreasing = True)
for v in clauses_gen.variables():
F.add_variable(v)
for c in clauses_gen.clauses():
F.add_clause(c,strict=True)
for (i1,i2),(v1,v2) in product(combinations(xrange(1,k+1),2),
combinations(G.nodes(),2)):
if not G.has_edge(v1,v2):
F.add_clause( clauses_gen.forbid_image(i1,v1) + clauses_gen.forbid_image(i2,v2),strict=True)
return F
示例14: GraphColoringFormula
# 需要导入模块: from cnfformula.cnf import CNF [as 别名]
# 或者: from cnfformula.cnf.CNF import header [as 别名]
def GraphColoringFormula(G,colors,functional=True):
"""Generates the clauses for colorability formula
The formula encodes the fact that the graph :math:`G` has a coloring
with color set ``colors``. This means that it is possible to
assign one among the elements in ``colors``to that each vertex of
the graph such that no two adjacent vertices get the same color.
Parameters
----------
G : networkx.Graph
a simple undirected graph
colors : list or positive int
a list of colors or a number of colors
Returns
-------
CNF
the CNF encoding of the coloring problem on graph ``G``
"""
col=CNF()
col.mode_strict()
if isinstance(colors,int) and colors>=0:
colors = range(1,colors+1)
if not isinstance(list, collections.Iterable):
ValueError("Parameter \"colors\" is expected to be a iterable")
# Describe the formula
name="graph colorability"
if hasattr(G,'name'):
col.header=name+" of graph:\n"+G.name+".\n\n"+col.header
else:
col.header=name+".\n\n"+col.header
# Fix the vertex order
V=enumerate_vertices(G)
# Create the variables
for vertex in V:
for color in colors:
col.add_variable('x_{{{0},{1}}}'.format(vertex,color))
# Each vertex has a color
for vertex in V:
clause = []
for color in colors:
clause += [(True,'x_{{{0},{1}}}'.format(vertex,color))]
col.add_clause(clause)
# unique color per vertex
if functional:
for (c1,c2) in combinations(colors,2):
col.add_clause([
(False,'x_{{{0},{1}}}'.format(vertex,c1)),
(False,'x_{{{0},{1}}}'.format(vertex,c2))])
# This is a legal coloring
for (v1,v2) in enumerate_edges(G):
for c in colors:
col.add_clause([
(False,'x_{{{0},{1}}}'.format(v1,c)),
(False,'x_{{{0},{1}}}'.format(v2,c))])
return col
示例15: DominatingSet
# 需要导入模块: from cnfformula.cnf import CNF [as 别名]
# 或者: from cnfformula.cnf.CNF import header [as 别名]
def DominatingSet(G,d, alternative = False):
r"""Generates the clauses for a dominating set for G of size <= d
The formula encodes the fact that the graph :math:`G` has
a dominating set of size :math:`d`. This means that it is possible
to pick at most :math:`d` vertices in :math:`V(G)` so that all remaining
vertices have distance at most one from the selected ones.
Parameters
----------
G : networkx.Graph
a simple undirected graph
d : a positive int
the size limit for the dominating set
alternative : bool
use an alternative construction that
is provably hard from resolution proofs.
Returns
-------
CNF
the CNF encoding for dominating of size :math:`\leq d` for graph :math:`G`
"""
F=CNF()
if not isinstance(d,int) or d<1:
ValueError("Parameter \"d\" is expected to be a positive integer")
# Describe the formula
name="{}-dominating set".format(d)
if hasattr(G,'name'):
F.header=name+" of graph:\n"+G.name+".\n\n"+F.header
else:
F.header=name+".\n\n"+F.header
# Fix the vertex order
V=enumerate_vertices(G)
def D(v):
return "x_{{{0}}}".format(v)
def M(v,i):
return "g_{{{0},{1}}}".format(v,i)
def N(v):
return tuple(sorted([ v ] + [ u for u in G.neighbors(v) ]))
# Create variables
for v in V:
F.add_variable(D(v))
for i,v in product(range(1,d+1),V):
F.add_variable(M(v,i))
# No two (active) vertices map to the same index
if alternative:
for u,v in combinations(V,2):
for i in range(1,d+1):
F.add_clause( [ (False,D(u)),(False,D(v)), (False,M(u,i)), (False,M(v,i)) ])
else:
for i in range(1,d+1):
for c in CNF.less_or_equal_constraint([M(v,i) for v in V],1):
F.add_clause(c)
# (Active) Vertices in the sequence are not repeated
if alternative:
for v in V:
for i,j in combinations(range(1,d+1),2):
F.add_clause([(False,D(v)),(False,M(v,i)),(False,M(v,j))])
else:
for i,j in combinations_with_replacement(range(1,d+1),2):
i,j = min(i,j),max(i,j)
for u,v in combinations(V,2):
u,v = max(u,v),min(u,v)
F.add_clause([(False,M(u,i)),(False,M(v,j))])
# D(v) = M(v,1) or M(v,2) or ... or M(v,d)
if not alternative:
for i,v in product(range(1,d+1),V):
F.add_clause([(False,M(v,i)),(True,D(v))])
for v in V:
F.add_clause([(False,D(v))] + [(True,M(v,i)) for i in range(1,d+1)])
# Every neighborhood must have a true D variable
neighborhoods = sorted( set(N(v) for v in V) )
for N in neighborhoods:
F.add_clause([ (True,D(v)) for v in N])
return F