当前位置: 首页>>代码示例>>Python>>正文


Python Catalog.select_geographically方法代码示例

本文整理汇总了Python中catalog.Catalog.select_geographically方法的典型用法代码示例。如果您正苦于以下问题:Python Catalog.select_geographically方法的具体用法?Python Catalog.select_geographically怎么用?Python Catalog.select_geographically使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在catalog.Catalog的用法示例。


在下文中一共展示了Catalog.select_geographically方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: study_slc

# 需要导入模块: from catalog import Catalog [as 别名]
# 或者: from catalog.Catalog import select_geographically [as 别名]
    def study_slc(self):
        """
        receives nothing
        apply single link to all regions of japan
        saves the results on pickle objects
        """

        #defines
        COMPLETE_CATALOG = "../catalogs/new_jma.txt"
        TEMP_CATALOG1 = '../catalogs/temp1.txt'
        TEMP_CATALOG2 = '../catalogs/temp2.txt'
        DEBUG = '../catalogs/reduced_jma.txt'
        BOUND = 0
        MAG_THRESH = 1

        # auxiliary classes needed 
        cat = Catalog()
        slc1 = Single_Link()
        
        # distance threshold, the distance to use when the distance calculated 
        # by the single link cluster returns negative 
        dist_thresh = [12.0]

        # dictionary containing information of the quakes and region names 
        regions = {}
        regions["kanto"] = [cat.get_kanto_bounds(), 0.0]
        #regions["kansai"] = [cat.get_kansai_bounds(), 0.0]
        regions["tohoku"] = [cat.get_tohoku_bounds(), 0.0]
        regions["east_japan"] = [cat.get_east_japan_bounds(), 0.0]

        ## try to run for the whole japan catalog
        #japan_bound = [0.0, 400.0, 0.0, 400.0]
        #regions["japan"] = [japan_bound, 0.0]

        # iterate throgh every region
        for region, info in regions.items():
            
            for thresh in dist_thresh:

                # obtain catalog for the region
                cat.select_geographically(info[BOUND], COMPLETE_CATALOG, TEMP_CATALOG1)
                cat.get_mag_threshold(TEMP_CATALOG1, TEMP_CATALOG2, info[MAG_THRESH], index = 2)

                # apply single link to the catalog and get quake
                #quakes = slc1.apply_single_link(TEMP_CATALOG2, region, thresh)
                
                # save array as a pickle object in the correct location
                # save declustered quake array using pickle
                #path = 'data_persistence/declustered_array_slc_' + region + '_' + str(round(thresh, 3))
                #file_aux1 = open(path, 'wb')
                #pickle.dump(quakes, file_aux1)
        
                # classify quakes by making the centroid the medoid of the cluster 
                slc1.classify_quakes(path, 'closest')
                quake_path = path + '_classified_medoid'

        # clean up
        call(["rm", TEMP_CATALOG1, TEMP_CATALOG2])
开发者ID:gabriel951,项目名称:pibic,代码行数:60,代码来源:single_link_simulation.py

示例2: get_catalogs

# 需要导入模块: from catalog import Catalog [as 别名]
# 或者: from catalog.Catalog import select_geographically [as 别名]
    def get_catalogs(self):
        """
        reads each quake array, obtain correspondent catalog for each quake array
        in the end, unite all catalogs in one big catalog - jma style - 
        """
        # defines 
        CATALOG_READ = '../catalogs/jma.txt'

        # auxiliary classes needed
        cat = Catalog()
        slc = Single_Link()

        # get dictionary, containing for a given region the region bounds
        bounds = {}
        bounds["kanto"] = cat.get_kanto_bounds()
        bounds["kansai"] = cat.get_kansai_bounds()
        bounds["tohoku"] = cat.get_tohoku_bounds()
        bounds["east_japan"] = cat.get_east_japan_bounds()
        
        # obtain catalog for each region
        for region, bound in bounds.items():
            catalog_write = '../results/single_link/' + region + '_allshocks.txt'
            cat.select_geographically(bound, CATALOG_READ, catalog_write)
        
        # for each region, classify quakes
        for region, bound in bounds.items():
            quakes_path = 'data_persistence/declustered_array_slc_' + region 
            slc.classify_quakes(quakes_path, 'closest')

        # for each region
        for region, bound in bounds.items():
            
            # obtain quakes path, catalog to read from and catalog to write 
            quakes_path = 'data_persistence/declustered_array_slc_' + region + '_classified_medoid' 
            catalog_read = '../results/single_link/' + region + '_allshocks.txt' 
            catalog_write = '../results/single_link/' + region + '_classified.txt'
            slc.get_catalog_mainshocks(quakes_path, catalog_read, catalog_write) 

        # merge catalog in a big one
        call(["cat ../results/single_link/*classified.txt > ../results/single_link/temp.txt"], shell = True)

        # sort file by columns - firts the year, then the month and so it goes
        call(['sort -n -k 3,3 -n -k 4,4 -n -k 5,5 -n -k 8,8 -n -k 9,9 -n -k 10,10 ../results/single_link/temp.txt \
               > ../results/single_link/temp2.txt'], shell = True)

        # remove duplicate lines
        call(['uniq -u ../results/single_link/temp2.txt > ../results/single_link/regions_classified.txt'], shell = True)

        # remove temporary files 
        call(['rm ../results/single_link/temp*.txt'], shell=True)
开发者ID:gabriel951,项目名称:pibic,代码行数:52,代码来源:single_link_simulation.py

示例3: study_chi_square

# 需要导入模块: from catalog import Catalog [as 别名]
# 或者: from catalog.Catalog import select_geographically [as 别名]
    def study_chi_square(self, mag_thresh, region, time_spacing):
        """
        receives a magnitude threshold, a region and a interval of time
        perform a poisson test on the clusters that had quakes with magnitude above the threshold
        prints the results and returns nothing
        """
        CLUSTER_NUM = 1

        # auxiliar class
        stat = Statistic()
        cat = Catalog()
        slc = Single_Link()

        print('\nApplying chi-squared for magnitude ' + str(mag_thresh) + ' and region ' + str(region) + \
                ' and time interval of ' + str(time_spacing) + ' seconds')
            
        # get the name of the declustered and undeclustered catalog 
        decluster_catalog = '../results/single_link/temp_decluster_' + region + '.txt'
        original_catalog = '../results/single_link/temp_original_' + region + '.txt'
        aux_catalog = '../results/single_link/temp_aux_' + region + '.txt'
        
        # obtain catalog containing the quakes of the region - cat_region
        cat_orig = '../catalogs/new_jma.txt'
        cat_region = '../results/single_link/temp.txt'
        bounds = get_region_bounds(region)
        cat.select_geographically(bounds, cat_orig, cat_region) 

        # generates catalog containing only the mainshocks of clusters that had one quake (at least) 
        # with a shock greater than the magnitude threshold
        # open quake declustered array 
        path = '../results/single_link/declustered_array_' + region
        quakes = pickle.load(open(path, 'rb'))

        # mark every quake initially as an aftershock
        for quake in quakes: 
            quake.is_aftershock = True

        # iterate through all quakes 
        count = 0
        for quake in quakes:

            # if the current quake has magnitude bigger than or equal to the threshold
            if quake.mag >= mag_thresh: 

                # mark as mainshock the centroid it belongs to 
                quakes[quake.centroid_index].is_aftershock = False
                count += 1
        #print(count)
        # from the quake and catalog to read from, obtain declustered catalog 
        cat.record_mainshocks(quakes, aux_catalog, cat_region)
        cat.get_mainshocks(decluster_catalog, aux_catalog, index = 5)
         
        # obtain original catalog for the region, only with quakes bigger than magnitude
        cat.get_mag_threshold(cat_region, original_catalog, mag_thresh) 

        # apply the chisquared test for the declustered catalog and for the original catalog 
        print("Applying chi-squared for declustered catalog")
        stat.do_chi_square(decluster_catalog, 0.05, time_spacing)

        print("Applying chi-squared for the original catalog")
        stat.do_chi_square(original_catalog, 0.05, time_spacing)
开发者ID:gabriel951,项目名称:pibic,代码行数:63,代码来源:single_link_simulation.py

示例4: study_chisquare

# 需要导入模块: from catalog import Catalog [as 别名]
# 或者: from catalog.Catalog import select_geographically [as 别名]
    def study_chisquare(self, folder, array_path, days, alpha, mag_threshold=None):
        """
        receives a folder to look for the quakes, the path where the earthquake array is located,
        the number of days, a significance level and optionally a magnitude threshold

        performs a chisquare test for the 4 regions of japan and all the japan
        by taking the observed frequencies in that number of days
        """
        # auxiliar classes needed
        catalog = Catalog()
        stat = Statistic()

        # calculate the number of seconds to be done on the interval
        time_interval = days * 24.0 * 360.0

        # generate catalog in a good format to work with 
        quakes = pickle.load(open(array_path, 'rb'))
        catalog.record_mainshocks(quakes, folder + 'quakes.txt', '../catalogs/new_jma.txt')
        
        # get the core catalog name, and obtain it 
        if mag_threshold == None:
            CATALOG_EXTENSION = 'quakes.txt'
        else:
            CATALOG_EXTENSION = 'quakes_' + str(mag_threshold) + '.txt'
            catalog.get_mag_threshold(folder + 'quakes.txt', folder + CATALOG_EXTENSION ,mag_threshold)

        # do chi square test for all japan, with aftershocks
        print("Doing chi-square test for all japan, including aftershocks on analysis:")
        stat.do_chi_square(folder + CATALOG_EXTENSION, 0.05, time_interval)
        # do chi square test for all japan, without aftershocks
        print("\nDoing chi-square test for all japan, excluding aftershocks on analysis")
        catalog.get_mainshocks(folder + 'japan_mainshocks.txt', folder + CATALOG_EXTENSION, 5)
        stat.do_chi_square(folder + 'japan_mainshocks.txt', 0.05, time_interval)
       
        # get bounds for kanto
        bounds = catalog.get_kanto_bounds()
        # construct a catalog for quakes that happened in kanto
        catalog.select_geographically(bounds, folder + CATALOG_EXTENSION, 
                                        folder + 'quakes_kanto.txt')
        # do chi_squared test for kanto, with aftershocks
        print("\nDoing chi-square test for kanto, including aftershocks on analysis:")
        stat.do_chi_square(folder + 'quakes_kanto.txt', 0.05, time_interval)
        # do chi_squared test for kanto, without aftershocks
        print("\nDoing chi-square test for kanto, excluding aftershocks on analysis")
        catalog.get_mainshocks(folder + 'mainshocks_kanto.txt', folder + 'quakes_kanto.txt', 5)
        stat.do_chi_square(folder + 'mainshocks_kanto.txt', 0.05, time_interval)


        # get bounds for kansai
        bounds = catalog.get_kansai_bounds()
        # construct a catalog for quakes that happened in kansai
        catalog.select_geographically(bounds, folder + CATALOG_EXTENSION, 
                                        folder + 'quakes_kansai.txt')
        # do chi_squared test for kansai, with aftershocks
        print("\nDoing chi-square test for kansai, including aftershocks on analysis:")
        stat.do_chi_square(folder + 'quakes_kansai.txt', 0.05, time_interval)
        # do chi_squared test for kansai, without aftershocks
        print("\nDoing chi-square test for kansai, excluding aftershocks on analysis")
        catalog.get_mainshocks(folder + 'mainshocks_kansai.txt', folder + 'quakes_kansai.txt', 5)
        stat.do_chi_square(folder + 'mainshocks_kansai.txt', 0.05, time_interval)

        # get bounds for tohoku
        bounds = catalog.get_tohoku_bounds()
        # construct a catalog for quakes that happened in tohoku
        catalog.select_geographically(bounds, folder + CATALOG_EXTENSION, 
                                        folder + 'quakes_tohoku.txt')
        # do chi_squared test for tohoku, with aftershocks
        print("\nDoing chi-square test for tohoku, including aftershocks on analysis:")
        stat.do_chi_square(folder + 'quakes_tohoku.txt', 0.05, time_interval)
        # do chi_squared test for tohoku, without aftershocks
        print("\nDoing chi-square test for tohoku, excluding aftershocks on analysis")
        catalog.get_mainshocks(folder + 'mainshocks_tohoku.txt', folder + 'quakes_tohoku.txt', 5)
        stat.do_chi_square(folder + 'mainshocks_tohoku.txt', 0.05, time_interval)

        # get bounds for east_japan
        bounds = catalog.get_east_japan_bounds()
        # construct a catalog for quakes that happened in east_japan
        catalog.select_geographically(bounds, folder + CATALOG_EXTENSION, 
                                        folder + 'quakes_east_japan.txt')
        # do chi_squared test for east_japan, with aftershocks
        print("\nDoing chi-square test for east_japan, including aftershocks on analysis:")
        stat.do_chi_square(folder + 'quakes_east_japan.txt', 0.05, time_interval)
        # do chi_squared test for east_japan, without aftershocks
        print("\nDoing chi-square test for east_japan, excluding aftershocks on analysis")
        catalog.get_mainshocks(folder + 'mainshocks_east_japan.txt', folder + 'quakes_east_japan.txt', 5)
        stat.do_chi_square(folder + 'mainshocks_east_japan.txt', 0.05, time_interval)
开发者ID:gabriel951,项目名称:pibic,代码行数:88,代码来源:stats.py


注:本文中的catalog.Catalog.select_geographically方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。