本文整理汇总了Python中catalog.Catalog.get_kansai_bounds方法的典型用法代码示例。如果您正苦于以下问题:Python Catalog.get_kansai_bounds方法的具体用法?Python Catalog.get_kansai_bounds怎么用?Python Catalog.get_kansai_bounds使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类catalog.Catalog
的用法示例。
在下文中一共展示了Catalog.get_kansai_bounds方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: analyse_regions
# 需要导入模块: from catalog import Catalog [as 别名]
# 或者: from catalog.Catalog import get_kansai_bounds [as 别名]
def analyse_regions(self, array_path):
"""
receives a path to an array of quakes object
prints how many quakes there are outside a region that caused shocks on that region
"""
# auxiliary object
catalog = Catalog()
# get earthquake array
quakes = pickle.load(open(array_path, 'rb'))
# analyse kanto
kanto_bounds = catalog.get_kanto_bounds()
self.analyse_region(quakes, kanto_bounds, 'kanto')
# analyse kansai
kansai_bounds = catalog.get_kansai_bounds()
self.analyse_region(quakes, kansai_bounds, 'kansai')
# analyse tohoku
tohoku_bounds = catalog.get_tohoku_bounds()
self.analyse_region(quakes, tohoku_bounds, 'tohoku')
# analyse east_japan
east_japan_bounds = catalog.get_east_japan_bounds()
self.analyse_region(quakes, east_japan_bounds, 'east_japan')
示例2: plot_histograms
# 需要导入模块: from catalog import Catalog [as 别名]
# 或者: from catalog.Catalog import get_kansai_bounds [as 别名]
def plot_histograms(self, folder):
"""
receives a folder, corresponding to the path of the method we're using
ex: folder = '../results/window_method/'
plot histograms showing how much quakes have occurred on each year
for the regions of kanto, kansai, tohoku and east japan
"""
# auxiliar variable
catalog = Catalog()
# get bounds so to include all the japan
bounds = [0.0, 360.0, 0.0, 360.0]
# plot histogram for all japan, considering only mainshocks
self.show_quakes_by_year(folder + 'classified_quakes.txt', bounds, folder + 'japan_mainshocks.jpg',
'Mainshocks by year on japan region', mainshocks=True)
# plot histogram for japan, considering everything
self.show_quakes_by_year(folder + 'classified_quakes.txt', bounds, folder + 'japan_all.jpg',
'Quakes by year on japan region', mainshocks=False)
# get bounds of kanto
bounds = catalog.get_kanto_bounds()
# plot histogram for kanto, considering only mainshocks
self.show_quakes_by_year(folder + 'classified_quakes.txt', bounds, folder + 'kanto_mainshocks.jpg',
'Mainshocks by year on kanto region', mainshocks=True)
# plot histogram for kanto, considering everything
self.show_quakes_by_year(folder + 'classified_quakes.txt', bounds, folder + 'kanto_all.jpg',
'Quakes by year on kanto region', mainshocks=False)
# get bounds of kansai
bounds = catalog.get_kansai_bounds()
# plot histogram for kansai, considering only mainshocks
self.show_quakes_by_year(folder + 'classified_quakes.txt', bounds, folder + 'kansai_mainshocks.jpg',
'Mainshocks by year on kansai region', mainshocks=True)
# plot histogram for kansai, considering everything
self.show_quakes_by_year(folder + 'classified_quakes.txt', bounds, folder + 'kansai_all.jpg',
'Quakes by year on kansai region', mainshocks=False)
# get bounds of tohoku
bounds = catalog.get_tohoku_bounds()
# plot histogram for tohoku, considering only mainshocks
self.show_quakes_by_year(folder + 'classified_quakes.txt', bounds, folder + 'tohoku_mainshocks.jpg',
'Mainshocks by year on tohoku region', mainshocks=True)
# plot histogram for tohoku, considering everything
self.show_quakes_by_year(folder + 'classified_quakes.txt', bounds, folder + 'tohoku_all.jpg',
'Quakes by year on tohoku region', mainshocks=False)
# get bounds of east_japan
bounds = catalog.get_east_japan_bounds()
# plot histogram for east_japan, considering only mainshocks
self.show_quakes_by_year(folder + 'classified_quakes.txt', bounds, folder + 'east_japan_mainshocks.jpg',
'Mainshocks by year on east_japan region', mainshocks=True)
# plot histogram for east_japan, considering everything
self.show_quakes_by_year(folder + 'classified_quakes.txt', bounds, folder + 'east_japan_all.jpg',
'Quakes by year on east_japan region', mainshocks=False)
示例3: plot_heat_all
# 需要导入模块: from catalog import Catalog [as 别名]
# 或者: from catalog.Catalog import get_kansai_bounds [as 别名]
def plot_heat_all(self):
"""
receives nothing
plot heat maps for all regions of japan
returns nothing
"""
# auxiliar classes that we'll be needed
draw = Draw()
cat = Catalog()
# information relative to the regions
BOUNDS = 0
ZOOM_INDEX = 1
ZOOM_VALUE = 9
BINS = 2
info = {}
#info["kanto"] = [cat.get_kanto_bounds(), ZOOM_VALUE, 25]
info["kansai"] = [cat.get_kansai_bounds(), ZOOM_VALUE, 25]
#info["tohoku"] = [cat.get_tohoku_bounds(), ZOOM_VALUE, 25]
#info["east_japan"] = [cat.get_east_japan_bounds(), ZOOM_VALUE, 25]
# list containing the number of clusters to plot and the time period to consider
time_period = [[0.0, 12 * 366 * 24.0 * 3600.0]]
# get all valid combinations
combinations = list(itertools.product(info, time_period))
print(combinations)
REGION_IND = 0
TIME_IND = 1
# iterate through all combinations
for comb in combinations:
print(comb)
# get region
region = comb[REGION_IND]
# folder we save the results into
folder = '../images/single_link/'
# obtain array of quakes
path = '../results/single_link/declustered_array_' + region
quakes = pickle.load(open(path, 'rb'))
# plot background for current region
#draw.plot_quakes_coast_slc(quakes, comb[TIME_IND])
#call(["mv", "temp.png", folder + region + "_back_heat_coast-1.png"])
#input("Edit the image and then press Enter")
# plot cluster for the current data we have
stat = Statistic()
self.plot_heat(quakes, comb[TIME_IND], info[region][BINS], folder + region +"_back_heat_coast-1.png")
# save it in the correct format and do cleaning
call(["mv", "temp.png", folder + region + "_heat_coast.png"])
示例4: get_region_bounds
# 需要导入模块: from catalog import Catalog [as 别名]
# 或者: from catalog.Catalog import get_kansai_bounds [as 别名]
def get_region_bounds(region):
cat = Catalog()
if region == "kanto":
return cat.get_kanto_bounds()
elif region == "kansai":
return cat.get_kansai_bounds()
elif region == "tohoku":
return cat.get_tohoku_bounds()
elif region == "east_japan":
return cat.get_east_japan_bounds()
else:
exit("region not known")
示例5: get_catalogs
# 需要导入模块: from catalog import Catalog [as 别名]
# 或者: from catalog.Catalog import get_kansai_bounds [as 别名]
def get_catalogs(self):
"""
reads each quake array, obtain correspondent catalog for each quake array
in the end, unite all catalogs in one big catalog - jma style -
"""
# defines
CATALOG_READ = '../catalogs/jma.txt'
# auxiliary classes needed
cat = Catalog()
slc = Single_Link()
# get dictionary, containing for a given region the region bounds
bounds = {}
bounds["kanto"] = cat.get_kanto_bounds()
bounds["kansai"] = cat.get_kansai_bounds()
bounds["tohoku"] = cat.get_tohoku_bounds()
bounds["east_japan"] = cat.get_east_japan_bounds()
# obtain catalog for each region
for region, bound in bounds.items():
catalog_write = '../results/single_link/' + region + '_allshocks.txt'
cat.select_geographically(bound, CATALOG_READ, catalog_write)
# for each region, classify quakes
for region, bound in bounds.items():
quakes_path = 'data_persistence/declustered_array_slc_' + region
slc.classify_quakes(quakes_path, 'closest')
# for each region
for region, bound in bounds.items():
# obtain quakes path, catalog to read from and catalog to write
quakes_path = 'data_persistence/declustered_array_slc_' + region + '_classified_medoid'
catalog_read = '../results/single_link/' + region + '_allshocks.txt'
catalog_write = '../results/single_link/' + region + '_classified.txt'
slc.get_catalog_mainshocks(quakes_path, catalog_read, catalog_write)
# merge catalog in a big one
call(["cat ../results/single_link/*classified.txt > ../results/single_link/temp.txt"], shell = True)
# sort file by columns - firts the year, then the month and so it goes
call(['sort -n -k 3,3 -n -k 4,4 -n -k 5,5 -n -k 8,8 -n -k 9,9 -n -k 10,10 ../results/single_link/temp.txt \
> ../results/single_link/temp2.txt'], shell = True)
# remove duplicate lines
call(['uniq -u ../results/single_link/temp2.txt > ../results/single_link/regions_classified.txt'], shell = True)
# remove temporary files
call(['rm ../results/single_link/temp*.txt'], shell=True)
示例6: study_chisquare
# 需要导入模块: from catalog import Catalog [as 别名]
# 或者: from catalog.Catalog import get_kansai_bounds [as 别名]
def study_chisquare(self, folder, array_path, days, alpha, mag_threshold=None):
"""
receives a folder to look for the quakes, the path where the earthquake array is located,
the number of days, a significance level and optionally a magnitude threshold
performs a chisquare test for the 4 regions of japan and all the japan
by taking the observed frequencies in that number of days
"""
# auxiliar classes needed
catalog = Catalog()
stat = Statistic()
# calculate the number of seconds to be done on the interval
time_interval = days * 24.0 * 360.0
# generate catalog in a good format to work with
quakes = pickle.load(open(array_path, 'rb'))
catalog.record_mainshocks(quakes, folder + 'quakes.txt', '../catalogs/new_jma.txt')
# get the core catalog name, and obtain it
if mag_threshold == None:
CATALOG_EXTENSION = 'quakes.txt'
else:
CATALOG_EXTENSION = 'quakes_' + str(mag_threshold) + '.txt'
catalog.get_mag_threshold(folder + 'quakes.txt', folder + CATALOG_EXTENSION ,mag_threshold)
# do chi square test for all japan, with aftershocks
print("Doing chi-square test for all japan, including aftershocks on analysis:")
stat.do_chi_square(folder + CATALOG_EXTENSION, 0.05, time_interval)
# do chi square test for all japan, without aftershocks
print("\nDoing chi-square test for all japan, excluding aftershocks on analysis")
catalog.get_mainshocks(folder + 'japan_mainshocks.txt', folder + CATALOG_EXTENSION, 5)
stat.do_chi_square(folder + 'japan_mainshocks.txt', 0.05, time_interval)
# get bounds for kanto
bounds = catalog.get_kanto_bounds()
# construct a catalog for quakes that happened in kanto
catalog.select_geographically(bounds, folder + CATALOG_EXTENSION,
folder + 'quakes_kanto.txt')
# do chi_squared test for kanto, with aftershocks
print("\nDoing chi-square test for kanto, including aftershocks on analysis:")
stat.do_chi_square(folder + 'quakes_kanto.txt', 0.05, time_interval)
# do chi_squared test for kanto, without aftershocks
print("\nDoing chi-square test for kanto, excluding aftershocks on analysis")
catalog.get_mainshocks(folder + 'mainshocks_kanto.txt', folder + 'quakes_kanto.txt', 5)
stat.do_chi_square(folder + 'mainshocks_kanto.txt', 0.05, time_interval)
# get bounds for kansai
bounds = catalog.get_kansai_bounds()
# construct a catalog for quakes that happened in kansai
catalog.select_geographically(bounds, folder + CATALOG_EXTENSION,
folder + 'quakes_kansai.txt')
# do chi_squared test for kansai, with aftershocks
print("\nDoing chi-square test for kansai, including aftershocks on analysis:")
stat.do_chi_square(folder + 'quakes_kansai.txt', 0.05, time_interval)
# do chi_squared test for kansai, without aftershocks
print("\nDoing chi-square test for kansai, excluding aftershocks on analysis")
catalog.get_mainshocks(folder + 'mainshocks_kansai.txt', folder + 'quakes_kansai.txt', 5)
stat.do_chi_square(folder + 'mainshocks_kansai.txt', 0.05, time_interval)
# get bounds for tohoku
bounds = catalog.get_tohoku_bounds()
# construct a catalog for quakes that happened in tohoku
catalog.select_geographically(bounds, folder + CATALOG_EXTENSION,
folder + 'quakes_tohoku.txt')
# do chi_squared test for tohoku, with aftershocks
print("\nDoing chi-square test for tohoku, including aftershocks on analysis:")
stat.do_chi_square(folder + 'quakes_tohoku.txt', 0.05, time_interval)
# do chi_squared test for tohoku, without aftershocks
print("\nDoing chi-square test for tohoku, excluding aftershocks on analysis")
catalog.get_mainshocks(folder + 'mainshocks_tohoku.txt', folder + 'quakes_tohoku.txt', 5)
stat.do_chi_square(folder + 'mainshocks_tohoku.txt', 0.05, time_interval)
# get bounds for east_japan
bounds = catalog.get_east_japan_bounds()
# construct a catalog for quakes that happened in east_japan
catalog.select_geographically(bounds, folder + CATALOG_EXTENSION,
folder + 'quakes_east_japan.txt')
# do chi_squared test for east_japan, with aftershocks
print("\nDoing chi-square test for east_japan, including aftershocks on analysis:")
stat.do_chi_square(folder + 'quakes_east_japan.txt', 0.05, time_interval)
# do chi_squared test for east_japan, without aftershocks
print("\nDoing chi-square test for east_japan, excluding aftershocks on analysis")
catalog.get_mainshocks(folder + 'mainshocks_east_japan.txt', folder + 'quakes_east_japan.txt', 5)
stat.do_chi_square(folder + 'mainshocks_east_japan.txt', 0.05, time_interval)
示例7: show_divide_quakes
# 需要导入模块: from catalog import Catalog [as 别名]
# 或者: from catalog.Catalog import get_kansai_bounds [as 别名]
def show_divide_quakes(self, array_path):
"""
receives a path to an array of quakes
counts how many quakes happened in each of the sets:
set 1 - quakes that happened in kanto
set 2 - quakes that happened in kansai but not in set 1
set 3 - quakes that happened in tohoku but not in set 1 and 2
set 4 - quakes that happened in east japan but not in set 1, 2 and 3
set 5 - quakes that didn't happen in sets 1, 2, 3 and 4
"""
# obtain earthquake array
quakes = pickle.load(open(array_path, 'rb'))
# get bounds for all regions
catalog = Catalog()
kanto_bounds = catalog.get_kanto_bounds()
kansai_bounds = catalog.get_kansai_bounds()
tohoku_bounds = catalog.get_tohoku_bounds()
east_japan_bounds = catalog.get_east_japan_bounds()
# set variables to zero
num_set1 = 0
num_set2 = 0
num_set3 = 0
num_set4 = 0
num_set5 = 0
# iterate through the array
for index in range(len(quakes)):
# get current quake
cur_quake = quakes[index]
# if the current quake happened in kanto
if cur_quake.is_on_region(kanto_bounds):
# increment appropriate variable
num_set1 += 1
# go to the next quake
continue
# if the current quake happened in kansai
if cur_quake.is_on_region(kansai_bounds):
# increment appropriate variable
num_set2 += 1
# go to the next quake
continue
# if the current quake happened in tohoku
if cur_quake.is_on_region(tohoku_bounds):
# increment appropriate variable
num_set3 += 1
# go to the next quake
continue
# if the current quake happened in east_japan
if cur_quake.is_on_region(east_japan_bounds):
# increment appropriate variable
num_set4 += 1
# go to the next quake
continue
# finally, increment set that does not contain every quake
else:
num_set5 += 1
# print results
print("quakes that happened in kanto: ", num_set1)
print("quakes that happened in kansai but not in kanto: ", num_set2)
print("quakes that happened in tohoku, but not in kanto/kansai: ", num_set3)
print("quakes that happened in east japan, but not in tohoku/kanto/kansai: ", num_set4)
print("quakes that didn't happen in any of the previous for regions", num_set5)
示例8: plot_heat_all
# 需要导入模块: from catalog import Catalog [as 别名]
# 或者: from catalog.Catalog import get_kansai_bounds [as 别名]
def plot_heat_all(self, array_path, dep_lim = None, map_background = True):
"""
receives the path to a serialized array object
optionally receives a depth limit and a map background boolean, to
indicate wheter we use the map as background or the coast as background
in order to study the mainshocks plot heat map for all regions
"""
# obtain array of shocks within the depth limit
all_quakes = pickle.load(open(array_path, 'rb'))
useful_quakes = []
for index in range(len(all_quakes)):
current_quake = all_quakes[index]
if dep_lim != None and current_quake.depth > dep_lim:
continue
useful_quakes.append(current_quake)
# get instance of classes that we'll need methods
draw = Draw()
cat = Catalog()
# get dictionary that for every region name gives bound and zoom for all regions
regions = {}
regions["japan"] = [cat.get_catalog_bounds('../catalogs/new_jma.txt'), 5, 100]
regions["kanto"] = [cat.get_kanto_bounds(), 9, 25]
regions["kansai"] = [cat.get_kansai_bounds(), 9, 25]
regions["tohoku"] = [cat.get_tohoku_bounds(), 9, 25]
regions["east_japan"] = [cat.get_east_japan_bounds(), 9, 25]
# index to add legibility to the code
BOUNDS = 0
ZOOM = 1
BINS = 2
# set time bound on which to plot and which years to plot
year_bound = [[0.0, 12*366*24.0*3600]] # this way all years are considered
# iterate through the years
for time in year_bound:
# iterate through the regions
for region, info in regions.items():
# if we are using a map as background
if map_background:
# plot image for the region
draw.plot_image_quakes(useful_quakes, time, info[BOUNDS], info[ZOOM])
call(["pdftoppm", "-rx", "300", "-ry", "300", "-png", "Rplots.pdf", region + "_back_heat"])
call(["mv", region + "_back_heat-1.png", "../images/"])
call(["rm", "Rplots.pdf"])
input("Edit the image and then press Enter")
# plot heat map for the region in the given year
self.plot_heat(useful_quakes, time, info[BOUNDS], info[BINS], "../images/" + region + "_back_heat-1.png",\
only_main = False)
# save it in the correct format, and do cleaning
call(["mv", "temp.png", "../images/" + region + "_heat.png"])
else:
# plot image for the current region
draw.plot_quakes_coast(useful_quakes, time, info[BOUNDS], dep_lim = dep_lim)
call(["mv", "temp.png", "../images/" + region + "_back_heat_coast-1.png"])
input("Edit the image and then press Enter")
# plot heat map for the region in the given year
self.plot_heat(useful_quakes, time, info[BOUNDS], info[BINS], "../images/" + region + "_back_heat_coast-1.png",\
only_main = False)
# save it in the correct format, and do cleaning
call(["mv", "temp.png", "../images/" + region + "_heat_coast.png"])
示例9: plot_clusters_all
# 需要导入模块: from catalog import Catalog [as 别名]
# 或者: from catalog.Catalog import get_kansai_bounds [as 别名]
def plot_clusters_all(self, array_path, dep_lim = None, map_background = True):
"""
receives a path to the array of quakes.
optionally it receives a depth limit and a map_background boolean
if map_background = True, then the cluster is plot with a background map
if map_background = False, then the cluster is plot with the coast of japan
as background
in order to plot study the mainshocks and it's associated clusters,
plot some clusters on the map
"""
# obtain array of shocks within the depth limit
all_quakes = pickle.load(open(array_path, 'rb'))
useful_quakes = []
for index in range(len(all_quakes)):
current_quake = all_quakes[index]
if dep_lim != None and current_quake.depth > dep_lim:
continue
useful_quakes.append(current_quake)
# get instance of classes so we can access methods
draw = Draw()
cat = Catalog()
# get dictionary that for every region name gives bound and zoom for all regions
regions = {}
regions["japan"] = [cat.get_catalog_bounds('../catalogs/new_jma.txt'), 5]
regions["kanto"] = [cat.get_kanto_bounds(), 9]
regions["kansai"] = [cat.get_kansai_bounds(), 9]
regions["tohoku"] = [cat.get_tohoku_bounds(), 9]
regions["east_japan"] = [cat.get_east_japan_bounds(), 9]
# index to add legibility to the code
BOUNDS = 0
ZOOM = 1
# set list of how many clusters to plot, and which years to plot
num_clusters = [10]
year_bound = [[0.0, 12*366*24.0*3600]] # this way we consider all years
# iterate through the list containing how many clusters we plot
for num in num_clusters:
# iterate through the years
for time in year_bound:
# iterate through the regions
for region, info in regions.items():
# if we need to plot a map in the background
if map_background:
# plot image for the current region
draw.plot_image_quakes(useful_quakes, time, info[BOUNDS], info[ZOOM], num_clusters = num, dep_lim = dep_lim)
call(["pdftoppm", "-rx", "300", "-ry", "300", "-png", "Rplots.pdf", region + "_back"])
call(["mv", region + "_back-1.png", "../images/"])
call(["rm", "Rplots.pdf"])
input("Edit the image and then press Enter")
# plot cluster for current region in the given year, for the current number of clusters
self.plot_clusters(useful_quakes, num, time, info[BOUNDS], "../images/" + region +"_back-1.png")
## save it in the correct format, and do cleaning
call(["mv", "temp.png", "../images/" + region + "_clusters_map.png"])
# if we dont want to plot a japan map in the background
else:
# plot image for the current region
draw.plot_quakes_coast(useful_quakes, time, info[BOUNDS], num_clusters = num, dep_lim = dep_lim)
call(["mv", "temp.png", "../images/" + region + "_back_coast-1.png"])
input("Edit the image and then press Enter")
# plot cluster for current region in the given year, for the current number of clusters
self.plot_clusters(useful_quakes, num, time, info[BOUNDS], "../images/" + region +"_back_coast-1.png")
## save it in the correct format, and do cleaning
call(["mv", "temp.png", "../images/" + region + "_clusters_coast.png"])
示例10: draw_all_maps
# 需要导入模块: from catalog import Catalog [as 别名]
# 或者: from catalog.Catalog import get_kansai_bounds [as 别名]
def draw_all_maps(self):
"""
draw the maps for the japan catalog, kanto region
kansai region, tohoku region and east japan region
"""
# get a catalog
cat = Catalog();
# get japan bounds
bounds = cat.get_catalog_bounds("../catalogs/new_jma.txt")
# draw map for japan
self.draw_map(bounds, 5)
# convert image to png, save it on images folder and removes the pdf
call(["pdftoppm", "-rx", "300", "-ry", "300", "-png", "Rplots.pdf", "japan"])
call(["cp", "japan-1.png", "../images/"])
call(["rm", "japan-1.png"])
call(["rm", "Rplots.pdf"])
# get kanto bounds
bounds = cat.get_kanto_bounds()
# draw map for kanto
self.draw_map(bounds, 9)
# convert image to png, save it on images folder and removes the pdf
call(["pdftoppm", "-rx", "300", "-ry", "300", "-png", "Rplots.pdf", "kanto"])
call(["cp", "kanto-1.png", "../images/"])
call(["rm", "kanto-1.png"])
call(["rm", "Rplots.pdf"])
# get kansai bounds
bounds = cat.get_kansai_bounds()
# draw map for kansai
self.draw_map(bounds, 9)
# convert image to png, save it on images folder and removes the pdf
call(["pdftoppm", "-rx", "300", "-ry", "300", "-png", "Rplots.pdf", "kansai"])
call(["cp", "kansai-1.png", "../images/"])
call(["rm", "kansai-1.png"])
call(["rm", "Rplots.pdf"])
# get tohoku bounds
bounds = cat.get_tohoku_bounds()
# draw map for tohoku
self.draw_map(bounds, 8)
# convert image to png, save it on images folder and removes the pdf
call(["pdftoppm", "-rx", "300", "-ry", "300", "-png", "Rplots.pdf", "tohoku"])
call(["cp", "tohoku-1.png", "../images/"])
call(["rm", "tohoku-1.png"])
call(["rm", "Rplots.pdf"])
# get east_japan bounds
bounds = cat.get_east_japan_bounds()
# draw map for east_japan
self.draw_map(bounds, 8)
# convert image to png, save it on images folder and removes the pdf
call(["pdftoppm", "-rx", "300", "-ry", "300", "-png", "Rplots.pdf", "east_japan"])
call(["cp", "east_japan-1.png", "../images/"])
call(["rm", "east_japan-1.png"])
call(["rm", "Rplots.pdf"])