当前位置: 首页>>代码示例>>Python>>正文


Python Mlp.predict方法代码示例

本文整理汇总了Python中breze.learn.mlp.Mlp.predict方法的典型用法代码示例。如果您正苦于以下问题:Python Mlp.predict方法的具体用法?Python Mlp.predict怎么用?Python Mlp.predict使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在breze.learn.mlp.Mlp的用法示例。


在下文中一共展示了Mlp.predict方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_mlp_pickle

# 需要导入模块: from breze.learn.mlp import Mlp [as 别名]
# 或者: from breze.learn.mlp.Mlp import predict [as 别名]
def test_mlp_pickle():
    X = np.random.standard_normal((10, 2))
    Z = np.random.standard_normal((10, 1))

    X, Z = theano_floatx(X, Z)

    mlp = Mlp(2, [10], 1, ['tanh'], 'identity', 'squared', max_iter=2)

    climin.initialize.randomize_normal(mlp.parameters.data, 0, 1)
    mlp.fit(X, Z)

    Y = mlp.predict(X)

    pickled = cPickle.dumps(mlp)
    mlp2 = cPickle.loads(pickled)

    Y2 = mlp2.predict(X)

    assert np.allclose(Y, Y2)
开发者ID:Wiebke,项目名称:breze,代码行数:21,代码来源:test_mlp.py

示例2: test_mlp_predict

# 需要导入模块: from breze.learn.mlp import Mlp [as 别名]
# 或者: from breze.learn.mlp.Mlp import predict [as 别名]
def test_mlp_predict():
    X = np.random.standard_normal((10, 2))
    X, = theano_floatx(X)
    mlp = Mlp(2, [10], 1, ['tanh'], 'identity', 'squared', max_iter=10)
    mlp.predict(X)
开发者ID:RuinCakeLie,项目名称:breze,代码行数:7,代码来源:test_mlp.py

示例3: open

# 需要导入模块: from breze.learn.mlp import Mlp [as 别名]
# 或者: from breze.learn.mlp.Mlp import predict [as 别名]
    row = (
        "%(n_iter)i\t%(time)g\t%(loss)f\t%(val_loss)f\t%(mae_train)g\t%(rmse_train)g\t%(mae_test)g\t%(rmse_test)g"
        % info
    )
    results = open("result_gpu.txt", "a")
    print row
    results.write(row + "\n")
    results.close()


m.parameters.data[...] = info["best_pars"]
cp.dump(info["best_pars"], open("best_pars.pkl", "w"))


Y = m.predict(m.transformedData(X))
TY = m.predict(TX)

output_train = Y * np.std(train_labels) + np.mean(train_labels)
output_test = TY * np.std(train_labels) + np.mean(train_labels)


print "TRAINING SET\n"
print ("MAE:  %5.2f kcal/mol" % np.abs(output_train - train_labels).mean(axis=0))
print ("RMSE: %5.2f kcal/mol" % np.square(output_train - train_labels).mean(axis=0) ** 0.5)


print "TESTING SET\n"
print ("MAE:  %5.2f kcal/mol" % np.abs(output_test - test_labels).mean(axis=0))
print ("RMSE: %5.2f kcal/mol" % np.square(output_test - test_labels).mean(axis=0) ** 0.5)
开发者ID:vinodrajendran001,项目名称:Molecules-Prediction,代码行数:31,代码来源:MLPbreze_test.py

示例4: run_mlp

# 需要导入模块: from breze.learn.mlp import Mlp [as 别名]
# 或者: from breze.learn.mlp.Mlp import predict [as 别名]

#.........这里部分代码省略.........

    weight_decay /= m.exprs['inpt'].shape[0]
    m.exprs['true_loss'] = m.exprs['loss']
    c_wd = wd
    m.exprs['loss'] = m.exprs['loss'] + c_wd * weight_decay


    '''
    weight_decay = ((m.parameters.in_to_hidden**2).sum()
                        + (m.parameters.hidden_to_out**2).sum()
                        + (m.parameters.hidden_to_hidden_0**2).sum())
    weight_decay /= m.exprs['inpt'].shape[0]
    m.exprs['true_loss'] = m.exprs['loss']
    c_wd = 0.1
    m.exprs['loss'] = m.exprs['loss'] + c_wd * weight_decay
    '''

    mae = T.abs_((m.exprs['output'] * np.std(train_labels) + np.mean(train_labels))- m.exprs['target']).mean()
    f_mae = m.function(['inpt', 'target'], mae)

    rmse = T.sqrt(T.square((m.exprs['output'] * np.std(train_labels) + np.mean(train_labels))- m.exprs['target']).mean())
    f_rmse = m.function(['inpt', 'target'], rmse)



    start = time.time()
    # Set up a nice printout.
    keys = '#', 'seconds', 'loss', 'val loss', 'mae_train', 'rmse_train', 'mae_test', 'rmse_test'
    max_len = max(len(i) for i in keys)
    header = '\t'.join(i for i in keys)
    print header
    print '-' * len(header)
    results = open('result.txt', 'a')
    results.write(header + '\n')
    results.write('-' * len(header) + '\n')
    results.close()



    for i, info in enumerate(m.powerfit((X, Z), (TX, TZ), stop, pause)):
        if info['n_iter'] % n_report != 0:
            continue
        passed = time.time() - start
        losses.append((info['loss'], info['val_loss']))
        info.update({
            'time': passed,
            'mae_train': f_mae(m.transformedData(X), train_labels),
            'rmse_train': f_rmse(m.transformedData(X), train_labels),
            'mae_test': f_mae(TX, test_labels),
            'rmse_test': f_rmse(TX, test_labels)

        })

        row = '%(n_iter)i\t%(time)g\t%(loss)f\t%(val_loss)f\t%(mae_train)g\t%(rmse_train)g\t%(mae_test)g\t%(rmse_test)g' % info
        results = open('result.txt','a')
        print row
        results.write(row + '\n')
        results.close()


    m.parameters.data[...] = info['best_pars']
    cp.dump(info['best_pars'], open('best_pars.pkl', 'w'))

    Y = m.predict(m.transformedData(X))
    TY = m.predict(TX)

    output_train = Y * np.std(train_labels) + np.mean(train_labels)
    output_test = TY * np.std(train_labels) + np.mean(train_labels)


    print 'TRAINING SET\n'
    print('MAE:  %5.2f kcal/mol'%np.abs(output_train - train_labels).mean(axis=0))
    print('RMSE: %5.2f kcal/mol'%np.square(output_train - train_labels).mean(axis=0) ** .5)


    print 'TESTING SET\n'
    print('MAE:  %5.2f kcal/mol'%np.abs(output_test - test_labels).mean(axis=0))
    print('RMSE: %5.2f kcal/mol'%np.square(output_test - test_labels).mean(axis=0) ** .5)


    mae_train = np.abs(output_train - train_labels).mean(axis=0)
    rmse_train = np.square(output_train - train_labels).mean(axis=0) ** .5
    mae_test = np.abs(output_test - test_labels).mean(axis=0)
    rmse_test = np.square(output_test - test_labels).mean(axis=0) ** .5


    results = open('result.txt', 'a')
    results.write('Training set:\n')
    results.write('MAE:\n')
    results.write("%5.2f" %mae_train)
    results.write('\nRMSE:\n')
    results.write("%5.2f" %rmse_train)
    results.write('\nTesting set:\n')
    results.write('MAE:\n')
    results.write("%5.2f" %mae_test)
    results.write('\nRMSE:\n')
    results.write("%5.2f" %rmse_test)


    results.close()
开发者ID:vinodrajendran001,项目名称:Molecules-Prediction,代码行数:104,代码来源:MLP_naivegrid.py

示例5: __init__

# 需要导入模块: from breze.learn.mlp import Mlp [as 别名]
# 或者: from breze.learn.mlp.Mlp import predict [as 别名]
class Predictor:

    # initialize the object
    def __init__(self):
        with open('config.txt', 'r') as config_f:
            for line in config_f:
                if not line.find('mode='):
                    self.mode = line.replace('mode=', '').replace('\n', '')
                if not line.find('robust='):
                    self.robust = line.replace('robust=', '').replace('\n', '')
        print 'mode=%s\nrobustness=%s' %(self.mode, self.robust)

        if self.robust == 'majority':
            self.pred_count = 0
            self.predictions = np.zeros((13,))
        if self.robust == 'markov':
            self.markov = Markov_Chain()
            self.last_state = 0
            self.current_state = 0
        if self.robust == 'markov_2nd':
            self.markov = Markov_Chain_2nd()
            self.pre_last_state = 0
            self.last_state = 0
            self.current_state = 0

        self.sample_count = 0
        self.sample = []

        if self.mode == 'cnn':
            self.bin_cm = 10
            self.max_x_cm = 440
            self.min_x_cm = 70
            self.max_y_cm = 250
            self.max_z_cm = 200
            self.nr_z_intervals = 2
            self.x_range = (self.max_x_cm - self.min_x_cm)/self.bin_cm
            self.y_range = self.max_y_cm*2/self.bin_cm
            self.z_range = self.nr_z_intervals
            self.input_size = 3700
            self.output_size = 13
            self.n_channels = 2
            self.im_width = self.y_range
            self.im_height = self.x_range

            print 'initializing cnn model.'
            self.model = Cnn(self.input_size, [16, 32], [200, 200], self.output_size, ['tanh', 'tanh'], ['tanh', 'tanh'],
                        'softmax', 'cat_ce', image_height=self.im_height, image_width=self.im_width,
                        n_image_channel=self.n_channels, pool_size=[2, 2], filter_shapes=[[5, 5], [5, 5]], batch_size=1)
            self.model.parameters.data[...] = cp.load(open('./best_cnn_pars.pkl', 'rb'))

        if self.mode == 'crafted':
            self.input_size = 156
            self.output_size = 13
            self.means = cp.load(open('means_crafted.pkl', 'rb'))
            self.stds = cp.load(open('stds_crafted.pkl', 'rb'))

            print 'initializing crafted features model.'
            self.model = Mlp(self.input_size, [1000, 1000], self.output_size, ['tanh', 'tanh'], 'softmax', 'cat_ce',
                             batch_size=1)
            self.model.parameters.data[...] = cp.load(open('./best_crafted_pars.pkl', 'rb'))

        # this is just a trick to make the internal C-functions compile before the first real sample arrives
        compile_sample = np.random.random((1,self.input_size))
        self.model.predict(compile_sample)

        print 'starting to listen to topic.'
        self.listener()

    # build the full samples from the arriving point clouds
    def build_samples(self, sample_part):
        for point in read_points(sample_part):
            self.sample.append(point)

        self.sample_count += 1

        if self.sample_count == 6:
            if self.mode == 'cnn':
                self.cnn_predict()
            if self.mode == 'crafted':
                self.crafted_predict()
            self.sample = []
            self.sample_count = 0

    # start listening to the point cloud topic
    def listener(self):
        rospy.init_node('listener', anonymous=True)
        rospy.Subscriber("/USArray_pc", PointCloud2, self.build_samples)
        rospy.spin()

    # let the model predict the output
    def cnn_predict(self):
        grid = np.zeros((self.z_range, self.x_range, self.y_range))

        for point in self.sample:
            if point[0]*100 < self.min_x_cm or point[0]*100 > self.max_x_cm-1 or point[1]*100 > self.max_y_cm-1 or point[1]*100 < -self.max_y_cm:
                continue

            x = (int(point[0]*100) - self.min_x_cm) / self.bin_cm
            y = (int(point[1]*100) + self.max_y_cm) / self.bin_cm
            z = int(point[2]*100) > (self.max_z_cm / self.nr_z_intervals)
#.........这里部分代码省略.........
开发者ID:m0r17z,项目名称:thesis,代码行数:103,代码来源:predictor.py


注:本文中的breze.learn.mlp.Mlp.predict方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。