当前位置: 首页>>代码示例>>Python>>正文


Python EmrConnection.set_termination_protection方法代码示例

本文整理汇总了Python中boto.emr.connection.EmrConnection.set_termination_protection方法的典型用法代码示例。如果您正苦于以下问题:Python EmrConnection.set_termination_protection方法的具体用法?Python EmrConnection.set_termination_protection怎么用?Python EmrConnection.set_termination_protection使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在boto.emr.connection.EmrConnection的用法示例。


在下文中一共展示了EmrConnection.set_termination_protection方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: start_hadoop_cluster

# 需要导入模块: from boto.emr.connection import EmrConnection [as 别名]
# 或者: from boto.emr.connection.EmrConnection import set_termination_protection [as 别名]
def start_hadoop_cluster(nodenum):
	try:
		hadoop_params = ['-m','mapred.tasktracker.map.tasks.maximum=1',
		          '-m', 'mapred.child.java.opts=-Xmx10g']
		configure_hadoop_action = BootstrapAction('configure_hadoop', 's3://elasticmapreduce/bootstrap-actions/configure-hadoop', hadoop_params)

		emr_connection = EmrConnection()
		bucket_name = "udk-bucket"
		steps = []
		copy_jar_step = JarStep(name='copy-jar',
			jar='s3n://' + bucket_name + '/copy-to-hdfs.jar',
			step_args=['s3n://' + bucket_name + '/pipeline.pear',
				'/mnt/pipeline.pear'])
		steps.append(copy_jar_step)

		jobflow_id = emr_connection.run_jobflow(name='udk',
			log_uri='s3://udk-bucket/jobflow_logs',
			master_instance_type='m2.xlarge',
			slave_instance_type='m2.xlarge',
			num_instances=nodenum,
			keep_alive=True,
			enable_debugging=False,
			bootstrap_actions=[configure_hadoop_action],
			hadoop_version='1.0.3',
			steps=steps)
		emr_connection.set_termination_protection(jobflow_id, True)
		
		return jobflow_id
	except Exception, e:
		return "none" 
开发者ID:valeter,项目名称:nlp-site,代码行数:32,代码来源:run_cluster.py

示例2: terminate

# 需要导入模块: from boto.emr.connection import EmrConnection [as 别名]
# 或者: from boto.emr.connection.EmrConnection import set_termination_protection [as 别名]
def terminate(cluster_id):
	try:
		emr_connection = EmrConnection()
		emr_connection.set_termination_protection(cluster_id, False)
		emr_connection.terminate_jobflow(cluster_id)
		return True
	except Exception, e:
		print e
		return False
开发者ID:valeter,项目名称:nlp-site,代码行数:11,代码来源:terminate_cluster.py

示例3: EmrLauncher

# 需要导入模块: from boto.emr.connection import EmrConnection [as 别名]
# 或者: from boto.emr.connection.EmrConnection import set_termination_protection [as 别名]
class EmrLauncher(object):

    # Default constructor of the class.
    def __init__(self):
        try:
            self.zone_name = "ap-southeast-1"
            self.access_key = "xxxxxx"
            self.private_key = "xxxxxxx"
            self.ec2_keyname = "xxxxxxxx"
            self.base_bucket = "s3://emr-bucket/"
            self.bootstrap_script = "custom-bootstrap.sh"
            self.log_dir = "Logs"
            self.emr_status_wait = 20
            self.conn = ""
            self.cluster_name = "MyFirstEmrCluster"

            # Establishing EmrConnection
            self.conn = EmrConnection(self.access_key, self.private_key,
                                 region=RegionInfo(name=self.zone_name,
                                 endpoint=self.zone_name + '.elasticmapreduce.amazonaws.com'))


            self.log_bucket_name = self.base_bucket + self.log_dir
            self.bootstrap_script_name = self.base_bucket + self.bootstrap_script

    def launch_emr_cluster(self, master_type, slave_type, num_instance, ami_version):
        try:
            #Custom Bootstrap step
            bootstrap_step = BootstrapAction("CustomBootStrap", self.bootstrap_script_name, None)

            #Modifyting block size to 256 MB
            block_size_conf = 'dfs.block.size=256'
            hadoop_config_params = ['-h', block_size_conf, '-h']
            hadoop_config_bootstrapper = BootstrapAction('hadoop-config',
                                               's3://elasticmapreduce/bootstrap-actions/configure-hadoop',
                                               hadoop_config_params)
            #Bootstrapping Ganglia
            hadoop_monitor_bootstrapper = BootstrapAction('ganglia-config',
                                                's3://elasticmapreduce/bootstrap-actions/install-ganglia', '')

            #Bootstrapping Impala
            impala_install_params = ['--install-impala','--base-path', 's3://elasticmapreduce', '--impala-version', 'latest']
            bootstrap_impala_install_step = BootstrapAction("ImpalaInstall", "s3://elasticmapreduce/libs/impala/setup-impala",
                                                                                                impala_install_params)
            #Hive installation
            hive_install_step = InstallHiveStep();

            #Pig Installation
            pig_install_step = InstallPigStep();

            #Launching the cluster
            jobid = self.conn.run_jobflow(
                         self.cluster_name,
                         self.log_bucket_name,
                         bootstrap_actions=[hadoop_config_bootstrapper, hadoop_monitor_bootstrapper, bootstrap_step,
                                            bootstrap_impala_install_step],
                         ec2_keyname=self.ec2_keyname,
                         steps=[hive_install_step, pig_install_step],
                         keep_alive=True,
                         action_on_failure = 'CANCEL_AND_WAIT',
                         master_instance_type=master_type,
                         slave_instance_type=slave_type,
                         num_instances=num_instance,
                         ami_version=ami_version)

            #Enabling the termination protection
            self.conn.set_termination_protection(jobid, True)

            #Checking the state of EMR cluster
            state = self.conn.describe_jobflow(jobid).state
            while state != u'COMPLETED' and state != u'SHUTTING_DOWN' and state != u'FAILED' and state != u'WAITING':
                #sleeping to recheck for status.
                time.sleep(int(self.emr_status_wait))
                state = self.conn.describe_jobflow(jobid).state

            if state == u'SHUTTING_DOWN' or state == u'FAILED':
                logging.error("Launching EMR cluster failed")
                return "ERROR"

            #Check if the state is WAITING. Then launch the next steps
            if state == u'WAITING':
                #Finding the master node dns of EMR cluster
                master_dns = self.conn.describe_jobflow(jobid).masterpublicdnsname
                logging.info("Launched EMR Cluster Successfully")
                logging.info("Master node DNS of EMR " + master_dns)
                return "SUCCESS"
        except:
            logging.error("Launching EMR cluster failed")
            return "FAILED"

    def main(self):
        try:
            master_type = 'm3.xlarge'
            slave_type = 'm3.xlarge'
            num_instance = 3
            ami_version = '2.4.8'

            emr_status = self.launch_emr_cluster(master_type, slave_type, num_instance, ami_version)
            if emr_status == 'SUCCESS':
                logging.info("Emr cluster launched successfully")
#.........这里部分代码省略.........
开发者ID:amalgjose,项目名称:MyExperiments,代码行数:103,代码来源:EmrLauncher.py


注:本文中的boto.emr.connection.EmrConnection.set_termination_protection方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。