本文整理汇总了Python中boto.emr.connection.EmrConnection.describe_jobflow方法的典型用法代码示例。如果您正苦于以下问题:Python EmrConnection.describe_jobflow方法的具体用法?Python EmrConnection.describe_jobflow怎么用?Python EmrConnection.describe_jobflow使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类boto.emr.connection.EmrConnection
的用法示例。
在下文中一共展示了EmrConnection.describe_jobflow方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_cluster_status
# 需要导入模块: from boto.emr.connection import EmrConnection [as 别名]
# 或者: from boto.emr.connection.EmrConnection import describe_jobflow [as 别名]
def get_cluster_status(cluster_id):
try:
emr_connection = EmrConnection()
flow = emr_connection.describe_jobflow(cluster_id)
if flow == None:
return "none"
return flow.state
except Exception, e:
return "none"
示例2: creating_a_connection
# 需要导入模块: from boto.emr.connection import EmrConnection [as 别名]
# 或者: from boto.emr.connection.EmrConnection import describe_jobflow [as 别名]
class EMR:
def creating_a_connection(self):
#Creating a connection
from boto.emr.connection import EmrConnection
self.conn = EmrConnection('', '')
def creating_streaming_job(self):
#Creating Streaming JobFlow Steps
from boto.emr.step import StreamingStep
self.step = StreamingStep(name='my bigdata task',
mapper='s3n://eth-src/raw_to_stations.py',
#mapper='s3n://elasticmapreduce/samples/wordcount/wordSplitter.py',
reducer='s3n://eth-src/stations_to_features.py',
#reducer='aggregate',
input='s3n://eth-input/2007.csv',
#input='s3n://elasticmapreduce/samples/wordcount/input',
output='s3n://eth-middle/2007')
def creating_jobflows(self):
#Creating JobFlows
#import boto.emr
#self.conn = boto.emr.connect_to_region('eu-west-1')
job_id = self.conn.run_jobflow(name='My jobflow',
log_uri='s3://eth-log/jobflow_logs',
master_instance_type='m3.xlarge',
slave_instance_type='m1.large',
num_instances=2,
steps=[self.step],
ami_version='3.3.1'
)
status = self.conn.describe_jobflow(job_id)
status.state
def terminating_jobflows(self, job_id):
#Terminating JobFlows
#self.conn = boto.emr.connect_to_region('eu-west-1')
self.conn.terminate_jobflow(job_id)
示例3: __init__
# 需要导入模块: from boto.emr.connection import EmrConnection [as 别名]
# 或者: from boto.emr.connection.EmrConnection import describe_jobflow [as 别名]
#.........这里部分代码省略.........
Returns a boto.emr.emrobject.JobFlow object.
Special notes:
The JobFlow object has the following relevant fields.
state <str> the state of the job flow,
either COMPLETED
| FAILED
| TERMINATED
| RUNNING
| SHUTTING_DOWN
| STARTING
| WAITING
steps <list(boto.emr.emrobject.Step)>
a list of the step details in the workflow.
The Step object has the following relevant fields.
state <str> the state of the step.
startdatetime <str> the start time of the
job.
enddatetime <str> the end time of the job.
WARNING! Amazon has an upper-limit on the frequency with
which you can call this method; we have had success with
calling it at most once every 10 seconds.
"""
if not self.job_id:
raise RankmaniacError('No job is running.')
return self._emr_conn.describe_jobflow(self.job_id)
def _get_last_process_step_iter_no(self):
"""
Returns the most recently process-step of the job flow that has
been completed.
"""
steps = self.describe().steps
i = 1
while i < len(steps):
step = steps[i]
if step.state != 'COMPLETED':
break
i += 2
return i / 2 - 1
def _get_default_outdir(self, name, iter_no=None):
"""
Returns the default output directory, which is 'iter_no/name/'.
"""
if iter_no is None:
iter_no = self._iter_no
# Return iter_no/name/ **with** the trailing slash
return '%s/%s/' % (iter_no, name)
def _submit_new_job(self, steps):
"""
示例4: StreamingStep
# 需要导入模块: from boto.emr.connection import EmrConnection [as 别名]
# 或者: from boto.emr.connection.EmrConnection import describe_jobflow [as 别名]
files_short="""split_A.txt
split_B.txt
split_C.txt
split_D.txt
split_E.txt
split_F.txt
split_G.txt
split_H.txt
split_I.txt
split_J.txt
split_K.txt
split_L.txt
split_M.txt""".split('\n')
input_files=['s3n://smalldata/'+f for f in files_short]
step = StreamingStep(name='Inverted Index ',
mapper='s3n://css739/invIndex/inv-index-mapper.py',
reducer='s3n://css739/invIndex/inv-index-mapper.py',
input=input_files,
#input='s3n://smalldata/wikipedia_titles.txt',
output='s3n://css739/invIndex/invindex_output2')
#cache_files=['s3n://css739/invindex/english_stoplist.py'])
jobid = conn.run_jobflow(name='Inverted Index', log_uri='s3n://css739/invIndex/jobflow_logs',steps=[step])
conn.describe_jobflow(jobid).state
示例5:
# 需要导入模块: from boto.emr.connection import EmrConnection [as 别名]
# 或者: from boto.emr.connection.EmrConnection import describe_jobflow [as 别名]
'OUTPUT=s3://dphiveoutput'])
jobname = 'MM Logs Jobflow %s' %dt.datetime.now()
jobid = conne.run_jobflow(name=jobname,
log_uri='s3://dphive/debug/',
ec2_keyname='dpaws',
master_instance_type='c1.medium',
slave_instance_type='c1.medium',
num_instances=3,
steps=[step1, step2])
while True:
status = conne.describe_jobflow(jobid)
if status.state == 'STARTING':
time.sleep(10)
elif status.state == 'RUNNING':
time.sleep(10)
elif status.state == 'WAITING':
time.sleep(10)
elif status.state == 'TERMINATED':
send('Hadoop Job Runner Update %s'%(dt.datetime.now()), 'The Hadoop Job: %s currently has the status: %s' %(jobid, status.state), '[email protected]')
break
elif status.state == 'FAILED':
send('Hadoop Job Runner Update %s'%(dt.datetime.now()), 'The Hadoop Job: %s currently has the status: %s' %(jobid, status.state), ['[email protected]', '[email protected]'])
break
elif status.state == 'SHUTTING_DOWN':
time.sleep(10)
elif status.state == 'COMPLETED':
示例6: str
# 需要导入模块: from boto.emr.connection import EmrConnection [as 别名]
# 或者: from boto.emr.connection.EmrConnection import describe_jobflow [as 别名]
for word in b.list():
keystring = str(word.key)
if re.match(keystring,'part-00000'):
word.get_contents_to_filename('/Users/winteram/Documents/Teaching/wordcount_output.txt')
# <codecell>
# Doing our own word counts
step = StreamingStep(name='Alcohol Step',
mapper='s3n://bia660-winter/mapper.py',
reducer='s3n://bia660-winter/reducer.py',
input='s3://datasets.elasticmapreduce/ngrams/books/20090715/eng-us-all/3gram/data',
output='s3n://bia660-winter/output')
# <codecell>
jobid = emrcon.run_jobflow(name='Alcohol Religion 6', log_uri='s3://bia660-winter/logfiles',steps=[step],num_instances=4)
# <codecell>
jobid
# <codecell>
status = emrcon.describe_jobflow(jobid)
print status.state
# <codecell>
示例7: EmrLauncher
# 需要导入模块: from boto.emr.connection import EmrConnection [as 别名]
# 或者: from boto.emr.connection.EmrConnection import describe_jobflow [as 别名]
class EmrLauncher(object):
# Default constructor of the class.
def __init__(self):
try:
self.zone_name = "ap-southeast-1"
self.access_key = "xxxxxx"
self.private_key = "xxxxxxx"
self.ec2_keyname = "xxxxxxxx"
self.base_bucket = "s3://emr-bucket/"
self.bootstrap_script = "custom-bootstrap.sh"
self.log_dir = "Logs"
self.emr_status_wait = 20
self.conn = ""
self.cluster_name = "MyFirstEmrCluster"
# Establishing EmrConnection
self.conn = EmrConnection(self.access_key, self.private_key,
region=RegionInfo(name=self.zone_name,
endpoint=self.zone_name + '.elasticmapreduce.amazonaws.com'))
self.log_bucket_name = self.base_bucket + self.log_dir
self.bootstrap_script_name = self.base_bucket + self.bootstrap_script
def launch_emr_cluster(self, master_type, slave_type, num_instance, ami_version):
try:
#Custom Bootstrap step
bootstrap_step = BootstrapAction("CustomBootStrap", self.bootstrap_script_name, None)
#Modifyting block size to 256 MB
block_size_conf = 'dfs.block.size=256'
hadoop_config_params = ['-h', block_size_conf, '-h']
hadoop_config_bootstrapper = BootstrapAction('hadoop-config',
's3://elasticmapreduce/bootstrap-actions/configure-hadoop',
hadoop_config_params)
#Bootstrapping Ganglia
hadoop_monitor_bootstrapper = BootstrapAction('ganglia-config',
's3://elasticmapreduce/bootstrap-actions/install-ganglia', '')
#Bootstrapping Impala
impala_install_params = ['--install-impala','--base-path', 's3://elasticmapreduce', '--impala-version', 'latest']
bootstrap_impala_install_step = BootstrapAction("ImpalaInstall", "s3://elasticmapreduce/libs/impala/setup-impala",
impala_install_params)
#Hive installation
hive_install_step = InstallHiveStep();
#Pig Installation
pig_install_step = InstallPigStep();
#Launching the cluster
jobid = self.conn.run_jobflow(
self.cluster_name,
self.log_bucket_name,
bootstrap_actions=[hadoop_config_bootstrapper, hadoop_monitor_bootstrapper, bootstrap_step,
bootstrap_impala_install_step],
ec2_keyname=self.ec2_keyname,
steps=[hive_install_step, pig_install_step],
keep_alive=True,
action_on_failure = 'CANCEL_AND_WAIT',
master_instance_type=master_type,
slave_instance_type=slave_type,
num_instances=num_instance,
ami_version=ami_version)
#Enabling the termination protection
self.conn.set_termination_protection(jobid, True)
#Checking the state of EMR cluster
state = self.conn.describe_jobflow(jobid).state
while state != u'COMPLETED' and state != u'SHUTTING_DOWN' and state != u'FAILED' and state != u'WAITING':
#sleeping to recheck for status.
time.sleep(int(self.emr_status_wait))
state = self.conn.describe_jobflow(jobid).state
if state == u'SHUTTING_DOWN' or state == u'FAILED':
logging.error("Launching EMR cluster failed")
return "ERROR"
#Check if the state is WAITING. Then launch the next steps
if state == u'WAITING':
#Finding the master node dns of EMR cluster
master_dns = self.conn.describe_jobflow(jobid).masterpublicdnsname
logging.info("Launched EMR Cluster Successfully")
logging.info("Master node DNS of EMR " + master_dns)
return "SUCCESS"
except:
logging.error("Launching EMR cluster failed")
return "FAILED"
def main(self):
try:
master_type = 'm3.xlarge'
slave_type = 'm3.xlarge'
num_instance = 3
ami_version = '2.4.8'
emr_status = self.launch_emr_cluster(master_type, slave_type, num_instance, ami_version)
if emr_status == 'SUCCESS':
logging.info("Emr cluster launched successfully")
#.........这里部分代码省略.........
示例8: main
# 需要导入模块: from boto.emr.connection import EmrConnection [as 别名]
# 或者: from boto.emr.connection.EmrConnection import describe_jobflow [as 别名]
def main():
aws_access = sys.argv[1]
aws_secert = sys.argv[2]
jar_path = sys.argv[3]
input_filename = sys.argv[4]
output_filename = sys.argv[5]
nodes = int(sys.argv[6])
slots = 7 * nodes
s3_in = sys.argv[7] + "_" + str(os.getpid()) + "_in"
s3_out= sys.argv[7] + "_" + str(os.getpid()) + "_out"
s3_asm= sys.argv[7] + "_" + str(os.getpid()) + "_asm"
readlen = int(sys.argv[8])
kmer= int(sys.argv[9])
# connect to S3
s3_conn = S3Connection(aws_access, aws_secert)
mybucket = s3_conn.create_bucket(aws_access.lower())
mybucket = s3_conn.get_bucket(aws_access.lower(), validate=False)
print "\nConnection created"
# upload data
k = Key(mybucket)
k.key = 'ReadStackCorrector.jar'
k.set_contents_from_filename(jar_path + 'ReadStackCorrector.jar')
#k.key = 'CloudBrush.jar'
k.key = 'CloudbrushGPU.jar'
k.set_contents_from_filename(jar_path + 'CloudbrushGPU-GPU.jar')
# uploading file parallel
#k.key = s3_in
#k.set_contents_from_filename(input_filename)
print "\nStarting Upload"
s3_path = 's3://%s/%s' % (aws_access.lower(), s3_in)
upload_cmd = 'python %s/s3-mp-upload.py %s %s %s %s -f 2>&1' % (jar_path, input_filename, s3_path, aws_access, aws_secert)
proc = subprocess.call( args=upload_cmd, shell=True )
#k.key = s3_out
#k.delete()
# connect to EMR InstanceGroup(nodes, 'CORE', 'c1.xlarge', 'ON_DEMAND', '[email protected]', '0.4')
emr_conn = EmrConnection(aws_access, aws_secert)
instance_groups = [
InstanceGroup(1, 'MASTER', 'm1.medium', 'ON_DEMAND', '[email protected]', '0.4'),
InstanceGroup(nodes, 'CORE', 'g2.2xlarge', 'ON_DEMAND', '[email protected]', '0.4')
]
# perform CloudRS
step1 = JarStep(name='CloudRS',
jar='s3n://%s/ReadStackCorrector.jar' % (aws_access.lower()),
step_args = ['-in', 's3n://%s/%s' % (aws_access.lower(), s3_in), '-out', s3_out, '-slots', slots, '-javaopts', '-Xmx960m'])
# perform CloudBrush
step2 = JarStep(name='CloudBrush',
jar='s3n://%s/CloudbrushGPU-GPU.jar' % (aws_access.lower()),
step_args = ['-reads', s3_out, '-asm', s3_asm, '-readlen', readlen, '-k', kmer, '-slots', slots, '-javaopts', '-Xmx960m'])
# copy from hdfs to S3
k.key = s3_asm
step3 = JarStep(name='S3DistCp',
jar='/home/hadoop/lib/emr-s3distcp-1.0.jar', #'s3://elasticmapreduce/libs/s3distcp/role/s3distcp.jar',
step_args = ['--src', 'hdfs:///user/hadoop/%s' % s3_asm , '--dest', 's3://%s/%s' % (aws_access.lower(), s3_asm), '--groupBy', '.*(part).*'])
jobid = emr_conn.run_jobflow(name='CloudBrush',
log_uri='s3://%s/jobflow_logs' % aws_access.lower(),
ami_version='latest',
hadoop_version='2.4.0', #'0.20.205'
keep_alive=False,
visible_to_all_users=True,
steps=[step1,step2,step3],
instance_groups = instance_groups)
state = emr_conn.describe_jobflow(jobid).state
print "job state = ", state
print "job id = ", jobid
while state != u'COMPLETED':
print time.asctime(time.localtime())
time.sleep(30)
state = emr_conn.describe_jobflow(jobid).state
print "job state = ", state
print "job id = ", jobid
if state == u'FAILED':
print 'FAILED!!!!'
break
# download file parallel
#k.key = "%s/part0" % (s3_asm)
#k.get_contents_to_filename(output_filename)
if state == u'COMPLETED':
s3_path = 's3://%s/%s/part0' % (aws_access.lower(), s3_asm)
download_cmd = 'python %s/s3-mp-download.py %s %s %s %s -f 2>&1' % (jar_path, s3_path, output_filename, aws_access, aws_secert)
proc = subprocess.call( args=download_cmd, shell=True )
# delete file in S3
k.key = s3_in
k.delete()
k.key = "%s/part0" % (s3_asm)
k.delete()
示例9: EmrManager
# 需要导入模块: from boto.emr.connection import EmrConnection [as 别名]
# 或者: from boto.emr.connection.EmrConnection import describe_jobflow [as 别名]
class EmrManager(object):
# Default constructor of the class. Uses default parameters if not provided.
def __init__(self, parameters):
try:
self.region_name = parameters["region_name"]
self.access_key = parameters["access_key"]
self.secret_key = parameters["secret_key"]
self.ec2_keypair_name = parameters["ec2_keypair_name"]
self.base_bucket = parameters["base_bucket"]
self.log_dir = parameters["log_dir"]
self.emr_status_wait = parameters["emr_status_wait"]
self.step_status_wait = parameters["step_status_wait"]
self.emr_cluster_name = parameters["emr_cluster_name"]
except:
logging.error("Something went wrong initializing EmrManager")
sys.exit()
# Establishing EmrConnection
self.connection = EmrConnection(self.access_key, self.secret_key,
region=RegionInfo(name=self.region_name,
endpoint=self.region_name + '.elasticmapreduce.amazonaws.com'))
self.log_bucket_name = self.base_bucket + self.log_dir
#Method for launching the EMR cluster
def launch_cluster(self, master_type, slave_type, num_instances, ami_version):
try:
#Launching the cluster
cluster_id = self.connection.run_jobflow(
self.emr_cluster_name,
self.log_bucket_name,
ec2_keyname=self.ec2_keypair_name,
keep_alive=True,
action_on_failure = 'CANCEL_AND_WAIT',
master_instance_type=master_type,
slave_instance_type=slave_type,
num_instances=num_instances,
ami_version=ami_version)
logging.info("Launching cluster: " + cluster_id + ". Please be patient. Check the status of your cluster in your AWS Console")
# Checking the state of EMR cluster
state = self.connection.describe_jobflow(cluster_id).state
while state != u'COMPLETED' and state != u'SHUTTING_DOWN' and state != u'FAILED' and state != u'WAITING':
#sleeping to recheck for status.
time.sleep(int(self.emr_status_wait))
state = self.connection.describe_jobflow(cluster_id).state
logging.info("Creating cluster " + cluster_id + ". Status: " + state)
if state == u'SHUTTING_DOWN' or state == u'FAILED':
logging.error("Launching EMR cluster failed")
return "ERROR"
#Check if the state is WAITING. Then launch the next steps
if state == u'WAITING':
#Finding the master node dns of EMR cluster
master_dns = self.connection.describe_jobflow(cluster_id).masterpublicdnsname
logging.info("Launched EMR Cluster Successfully with cluster id:" + cluster_id)
logging.info("Master node DNS of EMR " + master_dns)
return cluster_id
except:
logging.error("Launching EMR cluster failed")
return "FAILED"
# run scripting step in cluster
def run_scripting_step(self, cluster_id, name, script_path):
try:
step = ScriptRunnerStep(name=name,
step_args=[script_path],
action_on_failure="CONTINUE")
return self._run_step(cluster_id, step)
except:
logging.error("Running scripting step in cluster " + cluster_id + " failed.")
return "FAILED"
# run streaming step in cluster
def run_streaming_step(self, cluster_id, name, mapper_path, reducer_path, input_path, output_path):
try:
# bundle files with the job
files = []
if mapper_path != "NONE":
files.append(mapper_path)
mapper_path = mapper_path.split("/")[-1]
if reducer_path != "NONE":
files.append(reducer_path)
reducer_path = reducer_path.split("/")[-1]
# build streaming step
logging.debug("Launching streaming step with mapper: " + mapper_path + " reducer: " + reducer_path + " and files: " + str(files))
step = StreamingStep(name=name,
step_args=["-files"] + files,
mapper=mapper_path,
reducer=reducer_path,
input=input_path,
output=output_path,
action_on_failure="CONTINUE")
return self._run_step(cluster_id, step)
except:
logging.error("Running streaming step in cluster " + cluster_id + " failed.")
return "FAILED"
#.........这里部分代码省略.........
示例10: EmrClient
# 需要导入模块: from boto.emr.connection import EmrConnection [as 别名]
# 或者: from boto.emr.connection.EmrConnection import describe_jobflow [as 别名]
class EmrClient(object):
# The Hadoop version to use
HADOOP_VERSION = '1.0.3'
# The AMI version to use
AMI_VERSION = '2.4.7'
# Interval to wait between polls to EMR cluster in seconds
CLUSTER_OPERATION_RESULTS_POLLING_SECONDS = 10
# Timeout for EMR creation and ramp up in seconds
CLUSTER_OPERATION_RESULTS_TIMEOUT_SECONDS = 60 * 30
def __init__(self, region_name='us-east-1', aws_access_key_id=None, aws_secret_access_key=None):
# If the access key is not specified, get it from the luigi config.cfg file
if not aws_access_key_id:
aws_access_key_id = luigi.configuration.get_config().get('aws', 'aws_access_key_id')
if not aws_secret_access_key:
aws_secret_access_key = luigi.configuration.get_config().get('aws', 'aws_secret_access_key')
# Create the region in which to run
region_endpoint = u'elasticmapreduce.%s.amazonaws.com' % (region_name)
region = RegionInfo(name=region_name, endpoint=region_endpoint)
self.emr_connection = EmrConnection(aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
region=region)
def launch_emr_cluster(self, cluster_name, log_uri, ec2_keyname=None, master_type='m1.small', core_type='m1.small', num_instances=2, hadoop_version='1.0.3', ami_version='2.4.7', ):
# TODO Remove
# install_pig_step = InstallPigStep()
jobflow_id = self.emr_connection.run_jobflow(name=cluster_name,
log_uri=log_uri,
ec2_keyname=ec2_keyname,
master_instance_type=master_type,
slave_instance_type=core_type,
num_instances=num_instances,
keep_alive=True,
enable_debugging=True,
hadoop_version=EmrClient.HADOOP_VERSION,
steps=[],
ami_version=EmrClient.AMI_VERSION)
# Log important information
status = self.emr_connection.describe_jobflow(jobflow_id)
logger.info('Creating new cluster %s with following details' % status.name)
logger.info('jobflow ID:\t%s' % status.jobflowid)
logger.info('Log URI:\t%s' % status.loguri)
logger.info('Master Instance Type:\t%s' % status.masterinstancetype)
# A cluster of size 1 does not have any slave instances
if hasattr(status, 'slaveinstancetype'):
logger.info('Slave Instance Type:\t%s' % status.slaveinstancetype)
logger.info('Number of Instances:\t%s' % status.instancecount)
logger.info('Hadoop Version:\t%s' % status.hadoopversion)
logger.info('AMI Version:\t%s' % status.amiversion)
logger.info('Keep Alive:\t%s' % status.keepjobflowalivewhennosteps)
return self._poll_until_cluster_ready(jobflow_id)
def add_pig_step(self, jobflow_id, pig_file, name='Pig Script', pig_versions='latest', pig_args=[]):
pig_step = PigStep(name=name,
pig_file=pig_file,
pig_versions=pig_versions,
pig_args=pig_args,
# action_on_failure='CONTINUE',
)
self.emr_connection.add_jobflow_steps(jobflow_id, [pig_step])
# Poll until the cluster is done working
return self._poll_until_cluster_ready(jobflow_id)
def shutdown_emr_cluster(self, jobflow_id):
self.emr_connection.terminate_jobflow(jobflow_id)
return self._poll_until_cluster_shutdown(jobflow_id)
def get_jobflow_id(self):
# Get the id of the cluster that is WAITING for work
return self.emr_connection.list_clusters(cluster_states=['WAITING']).clusters[0].id
def get_master_dns(self):
"""
Get the master node's public address
"""
# Get the jobflow ID
jobflow_id = self.get_master_dns()
#.........这里部分代码省略.........
示例11: main
# 需要导入模块: from boto.emr.connection import EmrConnection [as 别名]
# 或者: from boto.emr.connection.EmrConnection import describe_jobflow [as 别名]
def main(args):
script_name = args
for i in range(2, 3, 2):
start_time = time.time()
bucket_name = 'nlp-' + str(i).strip()
emr_connection = EmrConnection()
preprocessing_steps = []
for j in xrange(12, 13, 12):
preprocessing_steps.append(JarStep(name='prerocessing-' + str(i).strip(),
jar='s3n://nlp-' + str(i).strip() + '/init/behemoth-core.jar',
step_args=['com.digitalpebble.behemoth.util.CorpusGenerator',
'-i', 's3n://nlp-' + str(i).strip() + '/' + str(j).strip() + '/texts',
'-o', 's3n://nlp-' + str(i).strip() + '/' + str(j).strip() + '/bcorpus']))
tika_steps = []
for j in xrange(12, 13, 12):
tika_steps.append(JarStep(name='tika-' + str(i).strip(),
jar='s3n://nlp-' + str(i).strip() + '/init/behemoth-tika.jar',
step_args=['com.digitalpebble.behemoth.tika.TikaDriver',
'-i', 's3n://nlp-' + str(i).strip() + '/' + str(j).strip() + '/bcorpus',
'-o', 's3n://nlp-' + str(i).strip() + '/' + str(j).strip() + '/tcorpus']))
copy_jar_steps = []
for j in xrange(12, 13, 12):
copy_jar_steps.append(JarStep(name='copy-jar-' + str(i).strip(),
jar='s3n://nlp-' + str(i).strip() + '/init/copy-to-hdfs.jar',
step_args=['s3n://nlp-' + str(i).strip() + '/init/pipeline.pear',
'/mnt/pipeline.pear']))
uima_steps = []
for j in xrange(12, 13, 12):
uima_steps.append(JarStep(name='uima-' + str(i).strip(),
jar='s3n://nlp-' + str(i).strip() + '/init/behemoth-uima.jar',
step_args=['com.digitalpebble.behemoth.uima.UIMADriver',
's3n://nlp-' + str(i).strip() + '/' + str(j).strip() + '/tcorpus',
'/mnt/ucorpus',
'/mnt/pipeline.pear']))
steps = []
steps.extend(preprocessing_steps
steps.extend(tika_steps)
steps.extend(copy_jar_steps)
steps.extend(uima_steps)
steps.extend(extract_result_steps)
hadoop_params = ['-m','mapred.tasktracker.map.tasks.maximum=1',
'-m', 'mapred.child.java.opts=-Xmx10g']
configure_hadoop_action = BootstrapAction('configure_hadoop', 's3://elasticmapreduce/bootstrap-actions/configure-hadoop', hadoop_params)
jobid = emr_connection.run_jobflow(name='nlp-cloud-' + str(i).strip(),
log_uri='s3://nlp-' + str(i).strip() + '/jobflow_logs',
master_instance_type='m2.xlarge',
slave_instance_type='m2.xlarge',
num_instances=i,
keep_alive=False,
enable_debugging=False,
bootstrap_actions=[configure_hadoop_action],
hadoop_version='1.0.3',
steps=steps)
termination_statuses = [u'COMPLETED', u'FAILED', u'TERMINATED']
while True:
time.sleep(5)
status = emr_connection.describe_jobflow(jobid)
if status.state in termination_statuses:
print 'Job finished for %s nodes' % i
break
print time.time() - start_time, ' seconds elapsed'
return True
if (__name__ == '__main__'):
args = sys.argv
if (check_args(args)):
if (main(args)):
sys.exit()
print 'Work successfully finished'
else:
print 'Could not finish work'
sys.exit(1)
else:
print USAGE_MESSAGE
sys.exit(2)
示例12: __init__
# 需要导入模块: from boto.emr.connection import EmrConnection [as 别名]
# 或者: from boto.emr.connection.EmrConnection import describe_jobflow [as 别名]
#.........这里部分代码省略.........
Stops the current running job.
'''
if not self.job_id:
raise Exception('No job is running.')
self.emr_conn.terminate_jobflow(self.job_id)
self.job_id = None
def get_job(self):
'''Gets the running job details
Returns:
JobFlow object with relevant fields:
state string the state of the job flow, either
COMPLETED | FAILED | TERMINATED
RUNNING | SHUTTING_DOWN | STARTING
WAITING | BOOTSTRAPPING
steps list(Step) a list of the step details in the
workflow. A Step has the relevant
fields:
status string
startdatetime string
enddatetime string
Note: Amazon has an upper-limit on the frequency with which you can
call this function; we have had success with calling it one
every 10 seconds.
'''
if not self.job_id:
raise Exception('No job is running.')
return self.emr_conn.describe_jobflow(self.job_id)
def add_step(self, mapper, reducer, input, output, num_map=1,
num_reduce=1):
'''Add a step to an existing job
Adds a new step to an already running job flow.
Note: any given job flow can support up to 256 steps. To workaround
this limitation, you can always choose to submit a new job
once the current job completes.
Arguments:
mapper string path to the mapper, relative to
your data directory.
reducer string path to the reducer, relative to
your data directory.
input string path to the input data, relative to
your data directory. To specify a
directory as input, ensure your path
contains a trailing /.
output string path to the desired output directory.
'''
if not self.job_id:
raise Exception('No job is running.')
step = self._make_step(mapper, reducer, input, output, num_map,
num_reduce)
self.emr_conn.add_jobflow_steps(self.job_id, [step])
def upload(self, in_dir='data'):
'''Upload local data to S3