当前位置: 首页>>代码示例>>Python>>正文


Python ConvolutionalSequence.push_allocation_config方法代码示例

本文整理汇总了Python中blocks.bricks.conv.ConvolutionalSequence.push_allocation_config方法的典型用法代码示例。如果您正苦于以下问题:Python ConvolutionalSequence.push_allocation_config方法的具体用法?Python ConvolutionalSequence.push_allocation_config怎么用?Python ConvolutionalSequence.push_allocation_config使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在blocks.bricks.conv.ConvolutionalSequence的用法示例。


在下文中一共展示了ConvolutionalSequence.push_allocation_config方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_convolutional_sequence

# 需要导入模块: from blocks.bricks.conv import ConvolutionalSequence [as 别名]
# 或者: from blocks.bricks.conv.ConvolutionalSequence import push_allocation_config [as 别名]
def test_convolutional_sequence():
    x = tensor.tensor4('x')
    num_channels = 4
    pooling_size = 3
    batch_size = 5
    activation = Rectifier().apply

    conv = ConvolutionalLayer(activation, (3, 3), 5,
                              (pooling_size, pooling_size),
                              weights_init=Constant(1.),
                              biases_init=Constant(5.))
    conv2 = ConvolutionalActivation(activation, (2, 2), 4,
                                    weights_init=Constant(1.))

    seq = ConvolutionalSequence([conv, conv2], num_channels,
                                image_size=(17, 13))
    seq.push_allocation_config()
    assert conv.num_channels == 4
    assert conv2.num_channels == 5
    conv2.convolution.use_bias = False
    y = seq.apply(x)
    seq.initialize()
    func = function([x], y)

    x_val = numpy.ones((batch_size, 4, 17, 13), dtype=theano.config.floatX)
    y_val = (numpy.ones((batch_size, 4, 4, 3)) *
             (9 * 4 + 5) * 4 * 5)
    assert_allclose(func(x_val), y_val)
开发者ID:xuanhan863,项目名称:blocks,代码行数:30,代码来源:test_conv.py

示例2: test_border_mode_not_pushed

# 需要导入模块: from blocks.bricks.conv import ConvolutionalSequence [as 别名]
# 或者: from blocks.bricks.conv.ConvolutionalSequence import push_allocation_config [as 别名]
def test_border_mode_not_pushed():
    layers = [Convolutional(border_mode='full'),
              ConvolutionalActivation(Rectifier().apply),
              ConvolutionalActivation(Rectifier().apply, border_mode='valid'),
              ConvolutionalLayer(Rectifier().apply, border_mode='full')]
    stack = ConvolutionalSequence(layers)
    stack.push_allocation_config()
    assert stack.children[0].border_mode == 'full'
    assert stack.children[1].border_mode == 'valid'
    assert stack.children[2].border_mode == 'valid'
    assert stack.children[3].border_mode == 'full'
    stack2 = ConvolutionalSequence(layers, border_mode='full')
    stack2.push_allocation_config()
    assert stack2.children[0].border_mode == 'full'
    assert stack2.children[1].border_mode == 'full'
    assert stack2.children[2].border_mode == 'full'
    assert stack2.children[3].border_mode == 'full'
开发者ID:xuanhan863,项目名称:blocks,代码行数:19,代码来源:test_conv.py

示例3: create_model_brick

# 需要导入模块: from blocks.bricks.conv import ConvolutionalSequence [as 别名]
# 或者: from blocks.bricks.conv.ConvolutionalSequence import push_allocation_config [as 别名]
def create_model_brick():
    layers = [
        conv_brick(5, 1, 32), bn_brick(), LeakyRectifier(leak=LEAK),
        conv_brick(4, 2, 64), bn_brick(), LeakyRectifier(leak=LEAK),
        conv_brick(4, 1, 128), bn_brick(), LeakyRectifier(leak=LEAK),
        conv_brick(4, 2, 256), bn_brick(), LeakyRectifier(leak=LEAK),
        conv_brick(4, 1, 512), bn_brick(), LeakyRectifier(leak=LEAK),
        conv_brick(1, 1, 512), bn_brick(), LeakyRectifier(leak=LEAK),
        conv_brick(1, 1, 2 * NLAT)]
    encoder_mapping = ConvolutionalSequence(
        layers=layers, num_channels=NUM_CHANNELS, image_size=IMAGE_SIZE,
        use_bias=False, name='encoder_mapping')
    encoder = GaussianConditional(encoder_mapping, name='encoder')

    layers = [
        conv_transpose_brick(4, 1, 256), bn_brick(), LeakyRectifier(leak=LEAK),
        conv_transpose_brick(4, 2, 128), bn_brick(), LeakyRectifier(leak=LEAK),
        conv_transpose_brick(4, 1, 64), bn_brick(), LeakyRectifier(leak=LEAK),
        conv_transpose_brick(4, 2, 32), bn_brick(), LeakyRectifier(leak=LEAK),
        conv_transpose_brick(5, 1, 32), bn_brick(), LeakyRectifier(leak=LEAK),
        conv_transpose_brick(1, 1, 32), bn_brick(), LeakyRectifier(leak=LEAK),
        conv_brick(1, 1, NUM_CHANNELS), Logistic()]
    decoder_mapping = ConvolutionalSequence(
        layers=layers, num_channels=NLAT, image_size=(1, 1), use_bias=False,
        name='decoder_mapping')
    decoder = DeterministicConditional(decoder_mapping, name='decoder')

    layers = [
        conv_brick(5, 1, 32), ConvMaxout(num_pieces=NUM_PIECES),
        conv_brick(4, 2, 64), ConvMaxout(num_pieces=NUM_PIECES),
        conv_brick(4, 1, 128), ConvMaxout(num_pieces=NUM_PIECES),
        conv_brick(4, 2, 256), ConvMaxout(num_pieces=NUM_PIECES),
        conv_brick(4, 1, 512), ConvMaxout(num_pieces=NUM_PIECES)]
    x_discriminator = ConvolutionalSequence(
        layers=layers, num_channels=NUM_CHANNELS, image_size=IMAGE_SIZE,
        name='x_discriminator')
    x_discriminator.push_allocation_config()

    layers = [
        conv_brick(1, 1, 512), ConvMaxout(num_pieces=NUM_PIECES),
        conv_brick(1, 1, 512), ConvMaxout(num_pieces=NUM_PIECES)]
    z_discriminator = ConvolutionalSequence(
        layers=layers, num_channels=NLAT, image_size=(1, 1), use_bias=False,
        name='z_discriminator')
    z_discriminator.push_allocation_config()

    layers = [
        conv_brick(1, 1, 1024), ConvMaxout(num_pieces=NUM_PIECES),
        conv_brick(1, 1, 1024), ConvMaxout(num_pieces=NUM_PIECES),
        conv_brick(1, 1, 1)]
    joint_discriminator = ConvolutionalSequence(
        layers=layers,
        num_channels=(x_discriminator.get_dim('output')[0] +
                      z_discriminator.get_dim('output')[0]),
        image_size=(1, 1),
        name='joint_discriminator')

    discriminator = XZJointDiscriminator(
        x_discriminator, z_discriminator, joint_discriminator,
        name='discriminator')

    ali = ALI(encoder, decoder, discriminator,
              weights_init=GAUSSIAN_INIT, biases_init=ZERO_INIT,
              name='ali')
    ali.push_allocation_config()
    encoder_mapping.layers[-1].use_bias = True
    encoder_mapping.layers[-1].tied_biases = False
    decoder_mapping.layers[-2].use_bias = True
    decoder_mapping.layers[-2].tied_biases = False
    ali.initialize()
    raw_marginals, = next(
        create_cifar10_data_streams(500, 500)[0].get_epoch_iterator())
    b_value = get_log_odds(raw_marginals)
    decoder_mapping.layers[-2].b.set_value(b_value)

    return ali
开发者ID:oplatek,项目名称:ALI,代码行数:78,代码来源:ali_shapes.py

示例4: build_submodel

# 需要导入模块: from blocks.bricks.conv import ConvolutionalSequence [as 别名]
# 或者: from blocks.bricks.conv.ConvolutionalSequence import push_allocation_config [as 别名]

#.........这里部分代码省略.........
            else:
                # there's a bit of a mix of names because `Convolutional` takes
                # a "step" argument, but `ConvolutionActivation` takes "conv_step" argument
                kwargs['conv_step'] = filter_step

            if (pool_size[0] == 0 and pool_size[1] == 0):
                layer_conv = ConvolutionalActivation(activation=activation,
                                                filter_size=filter_size,
                                                num_filters=num_filters,
                                                border_mode=border_mode,
                                                name="layer_%d" % index,
                                                **kwargs)
            else:
                if pool_step is None:
                    pass
                else:
                    kwargs['pooling_step'] = tuple(pool_step)

                layer_conv = ConvolutionalLayer(activation=activation,
                                                filter_size=filter_size,
                                                num_filters=num_filters,
                                                border_mode=border_mode,
                                                pooling_size=pool_size,
                                                name="layer_%d" % index,
                                                **kwargs)

            conv_layers.append(layer_conv)

        convnet = ConvolutionalSequence(conv_layers, num_channels=num_channels,
                                    image_size=image_size,
                                    weights_init=Uniform(width=0.1),
                                    biases_init=Constant(0.0),
                                    name="conv_section")
        convnet.push_allocation_config()
        convnet.initialize()
        output_dim = np.prod(convnet.get_dim('output'))
        output_conv = convnet.apply(output_conv)
        


    output_conv = Flattener().apply(output_conv)

    # FULLY CONNECTED
    output_mlp = output_conv
    full_layers = []
    assert len(L_dim_full_layers) == len(L_activation_full)
    assert len(L_dim_full_layers) + 1 == len(L_endo_dropout_full_layers)
    assert len(L_dim_full_layers) + 1 == len(L_exo_dropout_full_layers)

    # reguarding the batch dropout : the dropout is applied on the filter
    # which is equivalent to the output dimension
    # you have to look at the dropout_rate of the next layer
    # that is why we throw away the first value of L_exo_dropout_full_layers
    L_exo_dropout_full_layers = L_exo_dropout_full_layers[1:]
    pre_dim = output_dim
    print "When constructing the model, the output_dim of the conv section is %d." % output_dim
    if len(L_dim_full_layers):
        for (dim, activation_str,
            dropout, index) in zip(L_dim_full_layers,
                                  L_activation_full,
                                  L_exo_dropout_full_layers,
                                  range(len(L_dim_conv_layers),
                                        len(L_dim_conv_layers)+ 
                                        len(L_dim_full_layers))
                                   ):
                                          
开发者ID:gyom,项目名称:voltmeleon,代码行数:69,代码来源:build_model.py

示例5: create_model_brick

# 需要导入模块: from blocks.bricks.conv import ConvolutionalSequence [as 别名]
# 或者: from blocks.bricks.conv.ConvolutionalSequence import push_allocation_config [as 别名]
def create_model_brick():
    # Encoder
    enc_layers = [
        conv_brick(2, 1, 64), bn_brick(), LeakyRectifier(leak=LEAK),
        conv_brick(7, 2, 128), bn_brick(), LeakyRectifier(leak=LEAK),
        conv_brick(5, 2, 256), bn_brick(), LeakyRectifier(leak=LEAK),
        conv_brick(7, 2, 256), bn_brick(), LeakyRectifier(leak=LEAK),
        conv_brick(4, 1, 512), bn_brick(), LeakyRectifier(leak=LEAK),
        conv_brick(1, 1, 2 * NLAT)]

    encoder_mapping = EncoderMapping(layers=enc_layers,
                                     num_channels=NUM_CHANNELS,
                                     n_emb=NEMB,
                                     image_size=IMAGE_SIZE, weights_init=GAUSSIAN_INIT,
                                     biases_init=ZERO_INIT,
                                     use_bias=False)

    encoder = GaussianConditional(encoder_mapping, name='encoder')
    # Decoder
    dec_layers = [
        conv_transpose_brick(4, 1, 512), bn_brick(), LeakyRectifier(leak=LEAK),
        conv_transpose_brick(7, 2, 256), bn_brick(), LeakyRectifier(leak=LEAK),
        conv_transpose_brick(5, 2, 256), bn_brick(), LeakyRectifier(leak=LEAK),
        conv_transpose_brick(7, 2, 128), bn_brick(), LeakyRectifier(leak=LEAK),
        conv_transpose_brick(2, 1, 64), bn_brick(), LeakyRectifier(leak=LEAK),
        conv_brick(1, 1, NUM_CHANNELS), Logistic()]

    decoder = Decoder(
        layers=dec_layers, num_channels=NLAT + NEMB, image_size=(1, 1), use_bias=False,
        name='decoder_mapping')
    # Discriminator
    layers = [
        conv_brick(2, 1, 64), LeakyRectifier(leak=LEAK),
        conv_brick(7, 2, 128), bn_brick(), LeakyRectifier(leak=LEAK),
        conv_brick(5, 2, 256), bn_brick(), LeakyRectifier(leak=LEAK),
        conv_brick(7, 2, 256), bn_brick(), LeakyRectifier(leak=LEAK),
        conv_brick(4, 1, 512), bn_brick(), LeakyRectifier(leak=LEAK)]
    x_discriminator = ConvolutionalSequence(
        layers=layers, num_channels=NUM_CHANNELS, image_size=IMAGE_SIZE,
        use_bias=False, name='x_discriminator')
    x_discriminator.push_allocation_config()

    layers = [
        conv_brick(1, 1, 1024), LeakyRectifier(leak=LEAK),
        conv_brick(1, 1, 1024), LeakyRectifier(leak=LEAK)]
    z_discriminator = ConvolutionalSequence(
        layers=layers, num_channels=NLAT, image_size=(1, 1), use_bias=False,
        name='z_discriminator')
    z_discriminator.push_allocation_config()

    layers = [
        conv_brick(1, 1, 2048), LeakyRectifier(leak=LEAK),
        conv_brick(1, 1, 2048), LeakyRectifier(leak=LEAK),
        conv_brick(1, 1, 1)]
    joint_discriminator = ConvolutionalSequence(
        layers=layers,
        num_channels=(x_discriminator.get_dim('output')[0] +
                      z_discriminator.get_dim('output')[0] +
                      NEMB),
        image_size=(1, 1),
        name='joint_discriminator')

    discriminator = XZYJointDiscriminator(
        x_discriminator, z_discriminator, joint_discriminator,
        name='discriminator')

    ali = ConditionalALI(encoder, decoder, discriminator,
                         n_cond=NCLASSES, n_emb=NEMB,
                         weights_init=GAUSSIAN_INIT, biases_init=ZERO_INIT,
                         name='ali')
    ali.push_allocation_config()
    encoder_mapping.layers[-1].use_bias = True
    encoder_mapping.layers[-1].tied_biases = False
    decoder.layers[-2].use_bias = True
    decoder.layers[-2].tied_biases = False
    x_discriminator.layers[0].use_bias = True
    x_discriminator.layers[0].tied_biases = True
    ali.initialize()
    raw_marginals, = next(
        create_celeba_data_streams(500, 500)[0].get_epoch_iterator())
    b_value = get_log_odds(raw_marginals)
    decoder.layers[-2].b.set_value(b_value)

    return ali
开发者ID:IshmaelBelghazi,项目名称:ALI,代码行数:86,代码来源:ali_celeba_conditional.py

示例6: function

# 需要导入模块: from blocks.bricks.conv import ConvolutionalSequence [as 别名]
# 或者: from blocks.bricks.conv.ConvolutionalSequence import push_allocation_config [as 别名]
    decoder.initialize()
    decoder_fun = function([z, y], decoder.apply(z, embeddings))
    out = decoder_fun(z_hat, test_labels)

    # Discriminator

    layers = [
        conv_brick(5, 1, 32), ConvMaxout(num_pieces=NUM_PIECES),
        conv_brick(4, 2, 64), ConvMaxout(num_pieces=NUM_PIECES),
        conv_brick(4, 1, 128), ConvMaxout(num_pieces=NUM_PIECES),
        conv_brick(4, 2, 256), ConvMaxout(num_pieces=NUM_PIECES),
        conv_brick(4, 1, 512), ConvMaxout(num_pieces=NUM_PIECES)]
    x_discriminator = ConvolutionalSequence(
        layers=layers, num_channels=NUM_CHANNELS, image_size=IMAGE_SIZE,
        name='x_discriminator')
    x_discriminator.push_allocation_config()

    layers = [
        conv_brick(1, 1, 512), ConvMaxout(num_pieces=NUM_PIECES),
        conv_brick(1, 1, 512), ConvMaxout(num_pieces=NUM_PIECES)]
    z_discriminator = ConvolutionalSequence(
        layers=layers, num_channels=NLAT, image_size=(1, 1), use_bias=False,
        name='z_discriminator')
    z_discriminator.push_allocation_config()

    layers = [
        conv_brick(1, 1, 1024), ConvMaxout(num_pieces=NUM_PIECES),
        conv_brick(1, 1, 1024), ConvMaxout(num_pieces=NUM_PIECES),
        conv_brick(1, 1, 1)]
    joint_discriminator = ConvolutionalSequence(
        layers=layers,
开发者ID:IshmaelBelghazi,项目名称:ALI,代码行数:33,代码来源:conditional_bricks.py


注:本文中的blocks.bricks.conv.ConvolutionalSequence.push_allocation_config方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。