本文整理汇总了Python中blocks.bricks.conv.ConvolutionalSequence.allocate方法的典型用法代码示例。如果您正苦于以下问题:Python ConvolutionalSequence.allocate方法的具体用法?Python ConvolutionalSequence.allocate怎么用?Python ConvolutionalSequence.allocate使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类blocks.bricks.conv.ConvolutionalSequence
的用法示例。
在下文中一共展示了ConvolutionalSequence.allocate方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_convolutional_sequence_tied_biases_not_pushed_if_not_explicitly_set
# 需要导入模块: from blocks.bricks.conv import ConvolutionalSequence [as 别名]
# 或者: from blocks.bricks.conv.ConvolutionalSequence import allocate [as 别名]
def test_convolutional_sequence_tied_biases_not_pushed_if_not_explicitly_set():
cnn = ConvolutionalSequence(
sum([[Convolutional(filter_size=(1, 1), num_filters=1,
tied_biases=True), Rectifier()]
for _ in range(3)], []),
num_channels=1, image_size=(1, 1))
cnn.allocate()
assert [child.tied_biases for child in cnn.children
if isinstance(child, Convolutional)]
示例2: test_pooling_works_in_convolutional_sequence
# 需要导入模块: from blocks.bricks.conv import ConvolutionalSequence [as 别名]
# 或者: from blocks.bricks.conv.ConvolutionalSequence import allocate [as 别名]
def test_pooling_works_in_convolutional_sequence():
x = tensor.tensor4('x')
brick = ConvolutionalSequence([AveragePooling((2, 2), step=(2, 2)),
MaxPooling((4, 4), step=(2, 2),
ignore_border=True)],
image_size=(16, 32), num_channels=3)
brick.allocate()
y = brick.apply(x)
out = y.eval({x: numpy.empty((2, 3, 16, 32), dtype=theano.config.floatX)})
assert out.shape == (2, 3, 3, 7)
示例3: test_convolutional_transpose_original_size_inferred_conv_sequence
# 需要导入模块: from blocks.bricks.conv import ConvolutionalSequence [as 别名]
# 或者: from blocks.bricks.conv.ConvolutionalSequence import allocate [as 别名]
def test_convolutional_transpose_original_size_inferred_conv_sequence():
brick = ConvolutionalTranspose(filter_size=(4, 5), num_filters=10,
step=(3, 2))
seq = ConvolutionalSequence([brick], num_channels=5, image_size=(6, 9))
try:
seq.allocate()
except Exception as e:
raise AssertionError('exception raised: {}: {}'.format(
e.__class__.__name__, e))
示例4: test_convolutional_sequence_use_bias
# 需要导入模块: from blocks.bricks.conv import ConvolutionalSequence [as 别名]
# 或者: from blocks.bricks.conv.ConvolutionalSequence import allocate [as 别名]
def test_convolutional_sequence_use_bias():
cnn = ConvolutionalSequence(
sum([[Convolutional(filter_size=(1, 1), num_filters=1), Rectifier()]
for _ in range(3)], []),
num_channels=1, image_size=(1, 1),
use_bias=False)
cnn.allocate()
x = tensor.tensor4()
y = cnn.apply(x)
params = ComputationGraph(y).parameters
assert len(params) == 3 and all(param.name == 'W' for param in params)
示例5: test_convolutional_sequence_activation_get_dim
# 需要导入模块: from blocks.bricks.conv import ConvolutionalSequence [as 别名]
# 或者: from blocks.bricks.conv.ConvolutionalSequence import allocate [as 别名]
def test_convolutional_sequence_activation_get_dim():
seq = ConvolutionalSequence([Tanh()], num_channels=9, image_size=(4, 6))
seq.allocate()
assert seq.get_dim('output') == (9, 4, 6)
seq = ConvolutionalSequence([Convolutional(filter_size=(7, 7),
num_filters=5,
border_mode=(1, 1)),
Tanh()], num_channels=8, image_size=(8, 11))
seq.allocate()
assert seq.get_dim('output') == (5, 4, 7)
示例6: test_convolutional_sequence_use_bias
# 需要导入模块: from blocks.bricks.conv import ConvolutionalSequence [as 别名]
# 或者: from blocks.bricks.conv.ConvolutionalSequence import allocate [as 别名]
def test_convolutional_sequence_use_bias():
cnn = ConvolutionalSequence(
[ConvolutionalActivation(activation=Rectifier().apply, filter_size=(1, 1), num_filters=1) for _ in range(3)],
num_channels=1,
image_size=(1, 1),
use_bias=False,
)
cnn.allocate()
x = tensor.tensor4()
y = cnn.apply(x)
params = ComputationGraph(y).parameters
assert len(params) == 3 and all(param.name == "W" for param in params)
示例7: test_convolutional_sequence_with_convolutions_raw_activation
# 需要导入模块: from blocks.bricks.conv import ConvolutionalSequence [as 别名]
# 或者: from blocks.bricks.conv.ConvolutionalSequence import allocate [as 别名]
def test_convolutional_sequence_with_convolutions_raw_activation():
seq = ConvolutionalSequence(
[Convolutional(filter_size=(3, 3), num_filters=4),
Rectifier(),
Convolutional(filter_size=(5, 5), num_filters=3, step=(2, 2)),
Tanh()],
num_channels=2,
image_size=(21, 39))
seq.allocate()
x = theano.tensor.tensor4()
out = seq.apply(x).eval({x: numpy.ones((10, 2, 21, 39),
dtype=theano.config.floatX)})
assert out.shape == (10, 3, 8, 17)
示例8: EncoderMapping
# 需要导入模块: from blocks.bricks.conv import ConvolutionalSequence [as 别名]
# 或者: from blocks.bricks.conv.ConvolutionalSequence import allocate [as 别名]
class EncoderMapping(Initializable):
"""
Parameters
----------
layers: :class:`list`
list of bricks
num_channels: :class: `int`
Number of input channels
image_size: :class:`tuple`
Image size
n_emb: :class:`int`
Dimensionality of the embedding
use_bias: :class:`bool`
self explanatory
"""
def __init__(self, layers, num_channels, image_size, n_emb, use_bias=False, **kwargs):
self.layers = layers
self.num_channels = num_channels
self.image_size = image_size
self.pre_encoder = ConvolutionalSequence(layers=layers[:-1],
num_channels=num_channels,
image_size=image_size,
use_bias=use_bias,
name='encoder_conv_mapping')
self.pre_encoder.allocate()
n_channels = n_emb + self.pre_encoder.get_dim('output')[0]
self.post_encoder = ConvolutionalSequence(layers=[layers[-1]],
num_channels=n_channels,
image_size=(1, 1),
use_bias=use_bias)
children = [self.pre_encoder, self.post_encoder]
kwargs.setdefault('children', []).extend(children)
super(EncoderMapping, self).__init__(**kwargs)
@application(inputs=['x', 'y'], outputs=['output'])
def apply(self, x, y):
"Returns mu and logsigma"
# Getting emebdding
pre_z = self.pre_encoder.apply(x)
# Concatenating
pre_z_embed_y = tensor.concatenate([pre_z, y], axis=1)
# propagating through last layer
return self.post_encoder.apply(pre_z_embed_y)