本文整理汇总了Python中biggles.FramedPlot类的典型用法代码示例。如果您正苦于以下问题:Python FramedPlot类的具体用法?Python FramedPlot怎么用?Python FramedPlot使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了FramedPlot类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plotrand
def plotrand(x, y, frac=0.1, plt=None, **keys):
import biggles
from biggles import FramedPlot, Points
if plt is None:
plt = FramedPlot()
x=numpy.array(x,ndmin=1,copy=False)
y=numpy.array(y,ndmin=1,copy=False)
if x.size != y.size:
raise ValueError("x,y must be same size")
nrand = int(x.size*frac)
ind = numpy_util.random_subset(x.size, nrand)
if 'type' not in keys:
keys['type'] = 'dot'
c = Points(x[ind], y[ind], **keys)
plt.add(c)
if 'xlabel' in keys:
plt.xlabel = keys['xlabel']
if 'ylabel' in keys:
plt.ylabel = keys['ylabel']
show = keys.get('show',True)
if show:
plt.show()
return plt
示例2: plotprimedens
def plotprimedens(n):
pd = primedens(n)
steps = range(len(pd))
from biggles import FramedPlot, Curve
g = FramedPlot()
g.add(Curve(steps,pd))
g.show()
return
示例3: plot_radec
def plot_radec(self, type):
"""
ra/dec plot of all points and the matched points
"""
import biggles
import converter
from biggles import FramedPlot,Points
print()
dir=self.plotdir()
if not os.path.exists(dir):
os.makedirs(dir)
psfile = self.plotfile(type)
orig = self.read_original(type)
mat = self.read_matched(type)
plt=FramedPlot()
symsize = 2
if type == 'sdss' or type == 'other':
symsize = 0.25
plt.add( Points(orig['ra'],orig['dec'],type='dot', size=symsize) )
plt.add( Points(mat['ra'],mat['dec'],type='dot',
color='red', size=symsize) )
plt.xlabel = 'RA'
plt.ylabel = 'DEC'
print("Writing eps file:", psfile)
plt.write_eps(psfile)
converter.convert(psfile, dpi=120, verbose=True)
示例4: plot_masserr
def plot_masserr(self, filename):
import pcolors
data=eu.io.read(filename)
nr200 = data.size
nb = data['B'][0].size
plt = FramedPlot()
colors = pcolors.rainbow(nr200, 'hex')
clist = []
for ri in xrange(nr200):
r200 = data['r200'][ri]
m200 = data['m200'][ri]
p = Points(data['B'][ri], (m200-data['m200meas'][ri])/m200,
type='filled circle', color=colors[ri])
crv = Curve(data['B'][ri], (m200-data['m200meas'][ri])/m200,
color=colors[ri])
crv.label = 'r200: %0.2f' % r200
clist.append(crv)
plt.add(p,crv)
key = PlotKey(0.1,0.4,clist)
plt.add(key)
plt.xlabel=r'$\Omega_m \sigma_8^2 D(z)^2 b(M,z)$'
plt.ylabel = r'$(M_{200}^{true}-M)/M_{200}^{true}$'
epsfile = filename.replace('.rec','.eps')
print 'writing eps:',epsfile
plt.write_eps(eu.ostools.expand_path(epsfile))
示例5: plot_pk
def plot_pk(self,k,pk):
from biggles import FramedPlot, Curve
plt=FramedPlot()
plt.add(Curve(k,pk))
plt.xlog=True
plt.ylog=True
plt.xlabel = r'$k [h/Mpc]$'
plt.ylabel = r'$P_{lin}(k)$'
plt.aspect_ratio = 1
plt.show()
示例6: plot_xi
def plot_xi(self, r, xi):
from biggles import FramedPlot, Curve
minval = 1.e-4
xi = where(xi < minval, minval, xi)
plt=FramedPlot()
plt.add(Curve(r,xi))
plt.xlog=True
plt.ylog=True
plt.xlabel = r'$r [Mpc/h]$'
plt.ylabel = r'$\xi_{lin}(r)$'
plt.aspect_ratio=1
plt.show()
示例7: doplot
def doplot(self, fitres, h, minmag, maxmag):
tab=biggles.Table(2,1)
plt=FramedPlot()
plt.title='%s %.2f %.2f ' % (self.objtype, minmag, maxmag)
plt.xlabel=r'$\sigma$'
sprior=fitres.get_model()
nrand=100000
binsize=self.binsize
hplt=Histogram(h['hist'], x0=h['low'][0], binsize=binsize)
hplt.label='data'
srand=sprior.sample(nrand)
hrand=histogram(srand, binsize=binsize, min=h['low'][0], max=h['high'][-1], more=True)
hrand['hist'] = hrand['hist']*float(h['hist'].sum())/nrand
hpltrand=Histogram(hrand['hist'], x0=hrand['low'][0], binsize=binsize,
color='blue')
hpltrand.label='rand'
key=PlotKey(0.9,0.9,[hplt,hpltrand],halign='right')
plt.add(hplt, hpltrand, key)
tplt=fitres.plot_trials(show=False,fontsize_min=0.88888888)
tab[0,0] = plt
tab[1,0] = tplt
if self.show:
tab.show()
d=files.get_prior_dir()
d=os.path.join(d, 'plots')
epsfile='pofs-%.2f-%.2f-%s.eps' % (minmag,maxmag,self.objtype)
epsfile=os.path.join(d,epsfile)
eu.ostools.makedirs_fromfile(epsfile)
print epsfile
tab.write_eps(epsfile)
os.system('converter -d 100 %s' % epsfile)
return tab
示例8: doplot
def doplot(self):
tab = Table(2, 1)
tab.title = self.title
xfit, yfit, gprior = self.get_prior_vals()
nrand = 100000
binsize = self.binsize
h = self.h
h1 = self.h1
h2 = self.h2
g1rand, g2rand = gprior.sample2d(nrand)
grand = gprior.sample1d(nrand)
hrand = histogram(grand, binsize=binsize, min=0.0, max=1.0, more=True)
h1rand = histogram(g1rand, binsize=binsize, min=-1.0, max=1.0, more=True)
fbinsize = xfit[1] - xfit[0]
hrand["hist"] = hrand["hist"] * float(yfit.sum()) / hrand["hist"].sum() * fbinsize / binsize
h1rand["hist"] = h1rand["hist"] * float(h1["hist"].sum()) / h1rand["hist"].sum()
pltboth = FramedPlot()
pltboth.xlabel = r"$g$"
hplt1 = Histogram(h1["hist"], x0=h1["low"][0], binsize=binsize, color="red")
hplt2 = Histogram(h2["hist"], x0=h2["low"][0], binsize=binsize, color="blue")
hpltrand = Histogram(hrand["hist"], x0=hrand["low"][0], binsize=binsize, color="magenta")
hplt1rand = Histogram(h1rand["hist"], x0=h1rand["low"][0], binsize=binsize, color="magenta")
hplt1.label = r"$g_1$"
hplt2.label = r"$g_2$"
hplt1rand.label = "rand"
hpltrand.label = "rand"
keyboth = PlotKey(0.9, 0.9, [hplt1, hplt2, hplt1rand], halign="right")
pltboth.add(hplt1, hplt2, hplt1rand, keyboth)
tab[0, 0] = pltboth
plt = FramedPlot()
plt.xlabel = r"$|g|$"
hplt = Histogram(h["hist"], x0=h["low"][0], binsize=binsize)
hplt.label = "|g|"
line = Curve(xfit, yfit, color="blue")
line.label = "model"
key = PlotKey(0.9, 0.9, [hplt, line, hpltrand], halign="right")
plt.add(line, hplt, hpltrand, key)
tab[1, 0] = plt
if self.show:
tab.show()
return tab
示例9: test_rainbow
def test_rainbow():
import numpy
from biggles import FramedPlot, Points, Curve
num = 20
plt = FramedPlot()
x = numpy.linspace(0.0, 1.0, num)
y = x**2
colors = rainbow(num, 'hex')
for i in xrange(num):
p = Points([x[i]], [y[i]], type='filled circle',
color=colors[i])
c = Curve([x[i]],[y[i]], color=colors[i])
plt.add(p,c)
plt.show()
示例10: plot_drho
def plot_drho(comb=None, r=None, drho=None, drhoerr=None,
color='black',type='filled circle',
nolabel=False, noshow=False, minval=1.e-5,
aspect_ratio=1):
"""
This one stands alone.
"""
if comb is not None:
r=comb['rdrho']
drho=comb['drho']
drhoerr=comb['drhoerr']
else:
if r is None or drho is None or drhoerr is None:
raise ValueError("Send a combined struct or r,drho,drhoerr")
plt=FramedPlot()
plt.aspect_ratio=aspect_ratio
plt.xlog=True
plt.ylog=True
if not nolabel:
plt.xlabel = r'$r$ [$h^{-1}$ Mpc]'
plt.ylabel = r'$\delta\rho ~ [M_{\odot} pc^{-3}]$'
od=add_to_log_plot(plt, r, drho, drhoerr,
color=color,
type=type,
minval=minval)
# for drho we need even broader yrange
plt.xrange = od['xrange']
yr=od['yrange']
plt.yrange = [0.5*yr[0], 3*yr[1]]
if not noshow:
plt.show()
od['plt'] = plt
return od
示例11: compare_all_other
def compare_all_other(self, type, show=True):
fdict=self.all_other_fdict(type)
# this is the original file. It has the redshifts
orig = zphot.weighting.read_training(fdict['origfile'])
# this is the outputs
num = zphot.weighting.read_num(fdict['numfile1'])
# this is the weights file
weights = zphot.weighting.read_training(fdict['wfile2'])
# recoverable set
w_recoverable = where1(num['num'] > 0)
# this is actually the indexes back into the "orig" file
w_keep = num['photoid'][w_recoverable]
# get the z values for these validation objects
zrec = orig['z'][w_keep]
binsize=0.0314
valid_dict = histogram(zrec, min=0, max=1.1, binsize=binsize, more=True)
plt=FramedPlot()
vhist = valid_dict['hist']/(float(valid_dict['hist'].sum()))
pvhist=biggles.Histogram(vhist, x0=valid_dict['low'][0], binsize=binsize)
pvhist.label = 'truth'
weights_dict = histogram(weights['z'], min=0, max=1.1, binsize=binsize,
weights=weights['weight'], more=True)
whist = weights_dict['whist']/weights_dict['whist'].sum()
pwhist=biggles.Histogram(whist, x0=weights_dict['low'][0],
binsize=binsize, color='red')
pwhist.label = 'weighted train'
key = PlotKey(0.6,0.6,[pvhist,pwhist])
plt.add(pvhist,pwhist,key)
plt.add( biggles.PlotLabel(.8, .9, type) )
plt.write_eps(fdict['zhistfile'])
converter.convert(fdict['zhistfile'],dpi=90,verbose=True)
if show:
plt.show()
示例12: plot_m
def plot_m(self, r200, c):
from biggles import FramedPlot, Curve
n=1000
r = numpy.linspace(0.01, 20.0,n)
m = self.m(r, r200, c)
plt=FramedPlot()
plt.add( Curve(r,m) )
plt.xlog=True
plt.ylog=True
plt.show()
示例13: plot_mass
def plot_mass(comb=None, r=None, mass=None, masserr=None,
color='black',type='filled circle',
nolabel=False, noshow=False, minval=1.e11,
aspect_ratio=1):
if comb is not None:
r=comb['rmass']
mass=comb['mass']
masserr=comb['masserr']
else:
if r is None or mass is None or masserr is None:
raise ValueError("Send a combined struct or r,mass,masserr")
plt=FramedPlot()
plt.aspect_ratio=aspect_ratio
plt.xlog=True
plt.ylog=True
if not nolabel:
plt.xlabel = r'$r$ [$h^{-1}$ Mpc]'
plt.ylabel = r'$M(<r) ~ [h^{-1} M_{\odot}]$'
od=add_to_log_plot(plt, r, mass, masserr,
color=color,
type=type,
minval=minval)
plt.xrange = od['xrange']
plt.yrange = od['yrange']
if not noshow:
plt.show()
od['plt'] = plt
return od
示例14: plot_fits
def plot_fits(self, st):
import biggles
biggles.configure("default", "fontsize_min", 2)
parnames = ["A", "a", "g0", "gmax"]
npars = len(parnames)
tab = Table(npars, 1)
magmiddle = (st["minmag"] + st["maxmag"]) / 2
for i in xrange(npars):
yval = st["pars"][:, i]
yerr = st["perr"][:, i]
ymean = yval.mean()
ystd = yval.std()
yrange = [ymean - 3.5 * ystd, ymean + 3.5 * ystd]
pts = Points(magmiddle, yval, type="filled circle")
yerrpts = SymmetricErrorBarsY(magmiddle, yval, yerr)
xerrpts = ErrorBarsX(yval, st["minmag"], st["maxmag"])
plt = FramedPlot()
plt.yrange = yrange
plt.add(pts, xerrpts, yerrpts)
plt.xlabel = "mag"
plt.ylabel = parnames[i]
tab[i, 0] = plt
if self.show:
tab.show()
d = files.get_prior_dir()
d = os.path.join(d, "plots")
epsfile = "pofe-pars-%s.eps" % self.otype
epsfile = os.path.join(d, epsfile)
eu.ostools.makedirs_fromfile(epsfile)
print epsfile
tab.write_eps(epsfile)
os.system("converter -d 100 %s" % epsfile)
示例15: testfit
def testfit():
import biggles
from biggles import FramedPlot,Points,Curve
import scipy
from scipy.optimize import leastsq
## Parametric function: 'v' is the parameter vector, 'x' the independent varible
fp = lambda v, x: v[0]/(x**v[1])*sin(v[2]*x)
## Noisy function (used to generate data to fit)
v_real = [1.5, 0.1, 2.]
fn = lambda x: fp(v_real, x)
## Error function
e = lambda v, x, y: (fp(v,x)-y)
## Generating noisy data to fit
n = 30
xmin = 0.1
xmax = 5
x = linspace(xmin,xmax,n)
y = fn(x) + scipy.rand(len(x))*0.2*(fn(x).max()-fn(x).min())
## Initial parameter value
v0 = [3., 1, 4.]
## Fitting
v, success = leastsq(e, v0, args=(x,y), maxfev=10000)
print('Estimater parameters: ', v)
print('Real parameters: ', v_real)
X = linspace(xmin,xmax,n*5)
plt=FramedPlot()
plt.add(Points(x,y))
plt.add(Curve(X,fp(v,X),color='red'))
plt.show()