当前位置: 首页>>代码示例>>Python>>正文


Python GaussianARD.set_parameters方法代码示例

本文整理汇总了Python中bayespy.nodes.GaussianARD.set_parameters方法的典型用法代码示例。如果您正苦于以下问题:Python GaussianARD.set_parameters方法的具体用法?Python GaussianARD.set_parameters怎么用?Python GaussianARD.set_parameters使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在bayespy.nodes.GaussianARD的用法示例。


在下文中一共展示了GaussianARD.set_parameters方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_annealing

# 需要导入模块: from bayespy.nodes import GaussianARD [as 别名]
# 或者: from bayespy.nodes.GaussianARD import set_parameters [as 别名]
    def test_annealing(self):

        X = GaussianARD(3, 4)
        X.initialize_from_parameters(-1, 6)

        Q = VB(X)
        Q.set_annealing(0.1)

        #
        # Check that the gradient is correct
        #

        # Initial parameters 
        phi0 = X.phi
        # Gradient
        rg = X.get_riemannian_gradient()
        g = X.get_gradient(rg)
        # Numerical gradient of the first parameter
        eps = 1e-6
        p0 = X.get_parameters()
        l0 = Q.compute_lowerbound(ignore_masked=False)
        g_num = [(), ()]
        e = eps
        p1 = p0[0] + e
        X.set_parameters([p1, p0[1]])
        l1 = Q.compute_lowerbound(ignore_masked=False)
        g_num[0] = (l1 - l0) / eps
        # Numerical gradient of the second parameter
        p1 = p0[1] + e
        X.set_parameters([p0[0], p1])
        l1 = Q.compute_lowerbound(ignore_masked=False)
        g_num[1] = (l1 - l0) / (eps)
        # Check
        self.assertAllClose(g[0],
                            g_num[0])
        self.assertAllClose(g[1],
                            g_num[1])

        #
        # Gradient should be zero after updating
        #

        X.update()
        # Initial parameters 
        phi0 = X.phi
        # Numerical gradient of the first parameter
        eps = 1e-8
        p0 = X.get_parameters()
        l0 = Q.compute_lowerbound(ignore_masked=False)
        g_num = [(), ()]
        e = eps
        p1 = p0[0] + e
        X.set_parameters([p1, p0[1]])
        l1 = Q.compute_lowerbound(ignore_masked=False)
        g_num[0] = (l1 - l0) / eps
        # Numerical gradient of the second parameter
        p1 = p0[1] + e
        X.set_parameters([p0[0], p1])
        l1 = Q.compute_lowerbound(ignore_masked=False)
        g_num[1] = (l1 - l0) / (eps)
        # Check
        self.assertAllClose(0,
                            g_num[0],
                            atol=1e-5)
        self.assertAllClose(0,
                            g_num[1],
                            atol=1e-5)

        # Not at the optimum
        X.initialize_from_parameters(-1, 6)
        # Initial parameters 
        phi0 = X.phi
        # Gradient
        g = X.get_riemannian_gradient()
        # Parameters after VB-EM update
        X.update()
        phi1 = X.phi
        # Check
        self.assertAllClose(g[0],
                            phi1[0] - phi0[0])
        self.assertAllClose(g[1],
                            phi1[1] - phi0[1])
        

        pass
开发者ID:BayesianHuman,项目名称:bayespy,代码行数:87,代码来源:test_annealing.py


注:本文中的bayespy.nodes.GaussianARD.set_parameters方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。