当前位置: 首页>>代码示例>>Python>>正文


Python Factor.specializeVariableDomains方法代码示例

本文整理汇总了Python中bayesNet.Factor.specializeVariableDomains方法的典型用法代码示例。如果您正苦于以下问题:Python Factor.specializeVariableDomains方法的具体用法?Python Factor.specializeVariableDomains怎么用?Python Factor.specializeVariableDomains使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在bayesNet.Factor的用法示例。


在下文中一共展示了Factor.specializeVariableDomains方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: inferenceByLikelihoodWeightingSampling

# 需要导入模块: from bayesNet import Factor [as 别名]
# 或者: from bayesNet.Factor import specializeVariableDomains [as 别名]
    def inferenceByLikelihoodWeightingSampling(bayesNet, queryVariables, evidenceDict, numSamples):
        """
        Question 6: Inference by likelihood weighted sampling

        This function should perform a probabilistic inference query that
        returns the factor:

        P(queryVariables | evidenceDict)

        It should perform inference by performing likelihood weighting
        sampling.  It should sample numSamples times.

        In order for the autograder's solution to match yours, 
        your outer loop needs to iterate over the number of samples, 
        with the inner loop sampling from each variable's factor.
        Use the ordering of variables provided by BayesNet.linearizeVariables in 
        your inner loop so that the order of samples matches the autograder's.
        There are typically many linearization orders of a directed acyclic 
        graph (DAG), however we just use a particular one.

        The sum of the probabilities should sum to one (so that it is a true 
        conditional probability, conditioned on the evidence).

        bayesNet:       The Bayes Net on which we are making a query.
        queryVariables: A list of the variables which are unconditioned in
                        the inference query.
        evidenceDict:   An assignment dict {variable : value} for the
                        variables which are presented as evidence
                        (conditioned) in the inference query. 
        numSamples:     The number of samples that should be taken.


        Useful functions:
        sampleFromFactor
        normalize
        BayesNet.getCPT
        BayesNet.linearizeVariables
        """

        sampleFromFactor = sampleFromFactorRandomSource(randomSource)

        "*** YOUR CODE HERE ***"

        # create return factor
        newFactor = Factor(queryVariables, evidenceDict, bayesNet.variableDomainsDict())
        reducedVariableDomains = bayesNet.getReducedVariableDomains(evidenceDict)
        newFactor = newFactor.specializeVariableDomains(reducedVariableDomains)

        for i in range(numSamples):
            weight = 1.0
            allAssignments = {}
            allAssignments.update(evidenceDict)
            for var in bayesNet.linearizeVariables():

                tmpCPT = bayesNet.getCPT(var)
                if var in evidenceDict:
                    # accumulate weight
                    weight *= tmpCPT.getProbability(allAssignments)
                else:
                    newAssignment = sampleFromFactor(tmpCPT, allAssignments)
                    allAssignments.update(newAssignment)

            # accumulate sample
            p = newFactor.getProbability(allAssignments)
            newFactor.setProbability(allAssignments, p + weight)

        return normalize(newFactor)

        util.raiseNotDefined()
开发者ID:williamseto,项目名称:ai-class,代码行数:71,代码来源:inference.py


注:本文中的bayesNet.Factor.specializeVariableDomains方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。