当前位置: 首页>>代码示例>>Python>>正文


Python SimpleClassificationPipeline.set_hyperparameters方法代码示例

本文整理汇总了Python中autosklearn.pipeline.classification.SimpleClassificationPipeline.set_hyperparameters方法的典型用法代码示例。如果您正苦于以下问题:Python SimpleClassificationPipeline.set_hyperparameters方法的具体用法?Python SimpleClassificationPipeline.set_hyperparameters怎么用?Python SimpleClassificationPipeline.set_hyperparameters使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在autosklearn.pipeline.classification.SimpleClassificationPipeline的用法示例。


在下文中一共展示了SimpleClassificationPipeline.set_hyperparameters方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_default_configuration_multilabel

# 需要导入模块: from autosklearn.pipeline.classification import SimpleClassificationPipeline [as 别名]
# 或者: from autosklearn.pipeline.classification.SimpleClassificationPipeline import set_hyperparameters [as 别名]
 def test_default_configuration_multilabel(self):
     for i in range(2):
         dataset_properties = {'multilabel': True}
         classifier = SimpleClassificationPipeline(
             dataset_properties=dataset_properties)
         cs = classifier.get_hyperparameter_search_space()
         default = cs.get_default_configuration()
         X_train, Y_train, X_test, Y_test = get_dataset(dataset='iris',
                                                        make_multilabel=True)
         classifier.set_hyperparameters(default)
         classifier = classifier.fit(X_train, Y_train)
         predictions = classifier.predict(X_test)
         self.assertAlmostEqual(0.94,
                                sklearn.metrics.accuracy_score(predictions,
                                                               Y_test))
         scores = classifier.predict_proba(X_test)
开发者ID:Bryan-LL,项目名称:auto-sklearn,代码行数:18,代码来源:test_classification.py

示例2: test_categorical_passed_to_one_hot_encoder

# 需要导入模块: from autosklearn.pipeline.classification import SimpleClassificationPipeline [as 别名]
# 或者: from autosklearn.pipeline.classification.SimpleClassificationPipeline import set_hyperparameters [as 别名]
 def test_categorical_passed_to_one_hot_encoder(self, ohe_mock):
     cls = SimpleClassificationPipeline(
         init_params={
             'categorical_encoding:one_hot_encoding:categorical_features':
                 [True, False]
         }
     )
     self.assertEqual(
         ohe_mock.call_args[1]['init_params'],
         {'one_hot_encoding:categorical_features': [True, False]}
     )
     default = cls.get_hyperparameter_search_space().get_default_configuration()
     cls.set_hyperparameters(configuration=default,
         init_params={
             'categorical_encoding:one_hot_encoding:categorical_features':
                 [True, True, False]
         }
     )
     self.assertEqual(
         ohe_mock.call_args[1]['init_params'],
         {'one_hot_encoding:categorical_features': [True, True, False]}
     )
开发者ID:Bryan-LL,项目名称:auto-sklearn,代码行数:24,代码来源:test_classification.py

示例3: _test_configurations

# 需要导入模块: from autosklearn.pipeline.classification import SimpleClassificationPipeline [as 别名]
# 或者: from autosklearn.pipeline.classification.SimpleClassificationPipeline import set_hyperparameters [as 别名]
    def _test_configurations(self, configurations_space, make_sparse=False,
                             data=None, init_params=None,
                             dataset_properties=None):
        # Use a limit of ~3GiB
        limit = 3072 * 1024 * 1024
        resource.setrlimit(resource.RLIMIT_AS, (limit, limit))

        print(configurations_space)

        for i in range(10):
            config = configurations_space.sample_configuration()
            config._populate_values()

            # Restrict configurations which could take too long on travis-ci
            restrictions = {'classifier:passive_aggressive:n_iter': 5,
                            'classifier:sgd:n_iter': 5,
                            'classifier:adaboost:n_estimators': 50,
                            'classifier:adaboost:max_depth': 1,
                            'preprocessor:kernel_pca:n_components': 10,
                            'preprocessor:kitchen_sinks:n_components': 50,
                            'classifier:proj_logit:max_epochs': 1,
                            'classifier:libsvm_svc:degree': 2,
                            'regressor:libsvm_svr:degree': 2,
                            'preprocessor:truncatedSVD:target_dim': 10,
                            'preprocessor:polynomial:degree': 2,
                            'classifier:lda:n_components': 10,
                            'preprocessor:nystroem_sampler:n_components': 50,
                            'preprocessor:feature_agglomeration:n_clusters': 2,
                            'classifier:gradient_boosting:max_depth': 2,
                            'classifier:gradient_boosting:n_estimators': 50}

            for restrict_parameter in restrictions:
                restrict_to = restrictions[restrict_parameter]
                if restrict_parameter in config and \
                        config[restrict_parameter] is not None:
                    config._values[restrict_parameter] = restrict_to

            print(config)

            if data is None:
                X_train, Y_train, X_test, Y_test = get_dataset(
                    dataset='digits', make_sparse=make_sparse, add_NaNs=True)
            else:
                X_train = data['X_train'].copy()
                Y_train = data['Y_train'].copy()
                X_test = data['X_test'].copy()
                Y_test = data['Y_test'].copy()

            init_params_ = copy.deepcopy(init_params)
            cls = SimpleClassificationPipeline(random_state=1,
                                               dataset_properties=dataset_properties,
                                               init_params=init_params_,)
            cls.set_hyperparameters(config, init_params=init_params_)
            try:
                cls.fit(X_train, Y_train, )
                predictions = cls.predict(X_test.copy())
                predictions = cls.predict_proba(X_test)
            except MemoryError as e:
                continue
            except ValueError as e:
                if "Floating-point under-/overflow occurred at epoch" in \
                        e.args[0]:
                    continue
                elif "removed all features" in e.args[0]:
                    continue
                elif "all features are discarded" in e.args[0]:
                    continue
                elif "Numerical problems in QDA" in e.args[0]:
                    continue
                elif 'Bug in scikit-learn' in e.args[0]:
                    continue
                elif 'The condensed distance matrix must contain only finite ' \
                     'values.' in e.args[0]:
                    continue
                else:
                    print(config)
                    print(traceback.format_exc())
                    raise e
            except RuntimeWarning as e:
                if "invalid value encountered in sqrt" in e.args[0]:
                    continue
                elif "divide by zero encountered in" in e.args[0]:
                    continue
                elif "invalid value encountered in divide" in e.args[0]:
                    continue
                elif "invalid value encountered in true_divide" in e.args[0]:
                    continue
                else:
                    print(traceback.format_exc())
                    print(config)
                    raise e
            except UserWarning as e:
                if "FastICA did not converge" in e.args[0]:
                    continue
                else:
                    print(traceback.format_exc())
                    print(config)
                    raise e
开发者ID:Bryan-LL,项目名称:auto-sklearn,代码行数:100,代码来源:test_classification.py

示例4: test_weighting_effect

# 需要导入模块: from autosklearn.pipeline.classification import SimpleClassificationPipeline [as 别名]
# 或者: from autosklearn.pipeline.classification.SimpleClassificationPipeline import set_hyperparameters [as 别名]
    def test_weighting_effect(self):
        data = sklearn.datasets.make_classification(
            n_samples=200, n_features=10, n_redundant=2, n_informative=2,
            n_repeated=2, n_clusters_per_class=2, weights=[0.8, 0.2],
            random_state=1)

        for name, clf, acc_no_weighting, acc_weighting, places in \
                [('adaboost', AdaboostClassifier, 0.810, 0.735, 3),
                 ('decision_tree', DecisionTree, 0.780, 0.643, 3),
                 ('extra_trees', ExtraTreesClassifier, 0.780, 0.8, 3),
                 ('gradient_boosting', GradientBoostingClassifier,
                  0.737, 0.684, 3),
                 ('random_forest', RandomForest, 0.780, 0.789, 3),
                 ('libsvm_svc', LibSVM_SVC, 0.769, 0.72, 3),
                 ('liblinear_svc', LibLinear_SVC, 0.762, 0.735, 3),
                 ('passive_aggressive', PassiveAggressive, 0.642, 0.449, 3),
                 ('sgd', SGD, 0.818, 0.575, 2)
                ]:
            for strategy, acc in [
                ('none', acc_no_weighting),
                ('weighting', acc_weighting)
            ]:
                # Fit
                data_ = copy.copy(data)
                X_train = data_[0][:100]
                Y_train = data_[1][:100]
                X_test = data_[0][100:]
                Y_test = data_[1][100:]

                include = {'classifier': [name],
                           'preprocessor': ['no_preprocessing']}
                classifier = SimpleClassificationPipeline(
                    random_state=1, include=include)
                cs = classifier.get_hyperparameter_search_space()
                default = cs.get_default_configuration()
                default._values['balancing:strategy'] = strategy
                classifier = SimpleClassificationPipeline(
                    default, random_state=1, include=include)
                predictor = classifier.fit(X_train, Y_train)
                predictions = predictor.predict(X_test)
                self.assertAlmostEqual(
                    sklearn.metrics.f1_score(predictions, Y_test), acc,
                    places=places, msg=(name, strategy))

                # fit_transformer and fit_estimator
                data_ = copy.copy(data)
                X_train = data_[0][:100]
                Y_train = data_[1][:100]
                X_test = data_[0][100:]
                Y_test = data_[1][100:]

                classifier = SimpleClassificationPipeline(
                    default, random_state=1, include=include)
                classifier.set_hyperparameters(configuration=default)
                Xt, fit_params = classifier.fit_transformer(X_train, Y_train)
                classifier.fit_estimator(Xt, Y_train, **fit_params)
                predictions = classifier.predict(X_test)
                self.assertAlmostEqual(
                    sklearn.metrics.f1_score(predictions, Y_test), acc,
                    places=places)

        for name, pre, acc_no_weighting, acc_weighting in \
                [('extra_trees_preproc_for_classification',
                    ExtraTreesPreprocessorClassification, 0.810, 0.563),
                 ('liblinear_svc_preprocessor', LibLinear_Preprocessor,
                    0.837, 0.567)]:
            for strategy, acc in [('none', acc_no_weighting),
                                  ('weighting', acc_weighting)]:
                data_ = copy.copy(data)
                X_train = data_[0][:100]
                Y_train = data_[1][:100]
                X_test = data_[0][100:]
                Y_test = data_[1][100:]

                include = {'classifier': ['sgd'], 'preprocessor': [name]}

                classifier = SimpleClassificationPipeline(
                    random_state=1, include=include)
                cs = classifier.get_hyperparameter_search_space()
                default = cs.get_default_configuration()
                default._values['balancing:strategy'] = strategy
                classifier.set_hyperparameters(default)
                predictor = classifier.fit(X_train, Y_train)
                predictions = predictor.predict(X_test)
                self.assertAlmostEqual(
                    sklearn.metrics.f1_score(predictions, Y_test), acc,
                    places=3, msg=(name, strategy))

                # fit_transformer and fit_estimator
                data_ = copy.copy(data)
                X_train = data_[0][:100]
                Y_train = data_[1][:100]
                X_test = data_[0][100:]
                Y_test = data_[1][100:]

                default._values['balancing:strategy'] = strategy
                classifier = SimpleClassificationPipeline(
                    default, random_state=1, include=include)
                Xt, fit_params = classifier.fit_transformer(X_train, Y_train)
                classifier.fit_estimator(Xt, Y_train, **fit_params)
#.........这里部分代码省略.........
开发者ID:Bryan-LL,项目名称:auto-sklearn,代码行数:103,代码来源:test_balancing.py


注:本文中的autosklearn.pipeline.classification.SimpleClassificationPipeline.set_hyperparameters方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。