当前位置: 首页>>代码示例>>Python>>正文


Python SimpleClassificationPipeline.get_hyperparameter_search_space方法代码示例

本文整理汇总了Python中autosklearn.pipeline.classification.SimpleClassificationPipeline.get_hyperparameter_search_space方法的典型用法代码示例。如果您正苦于以下问题:Python SimpleClassificationPipeline.get_hyperparameter_search_space方法的具体用法?Python SimpleClassificationPipeline.get_hyperparameter_search_space怎么用?Python SimpleClassificationPipeline.get_hyperparameter_search_space使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在autosklearn.pipeline.classification.SimpleClassificationPipeline的用法示例。


在下文中一共展示了SimpleClassificationPipeline.get_hyperparameter_search_space方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_get_hyperparameter_search_space_preprocessor_contradicts_default_classifier

# 需要导入模块: from autosklearn.pipeline.classification import SimpleClassificationPipeline [as 别名]
# 或者: from autosklearn.pipeline.classification.SimpleClassificationPipeline import get_hyperparameter_search_space [as 别名]
    def test_get_hyperparameter_search_space_preprocessor_contradicts_default_classifier(self):
        cs = SimpleClassificationPipeline.get_hyperparameter_search_space(
            include={"preprocessor": ["densifier"]}, dataset_properties={"sparse": True}
        )
        self.assertEqual(cs.get_hyperparameter("classifier:__choice__").default, "qda")

        cs = SimpleClassificationPipeline.get_hyperparameter_search_space(
            include={"preprocessor": ["nystroem_sampler"]}
        )
        self.assertEqual(cs.get_hyperparameter("classifier:__choice__").default, "sgd")
开发者ID:Ayaro,项目名称:auto-sklearn,代码行数:12,代码来源:test_classification.py

示例2: test_get_hyperparameter_search_space_preprocessor_contradicts_default_classifier

# 需要导入模块: from autosklearn.pipeline.classification import SimpleClassificationPipeline [as 别名]
# 或者: from autosklearn.pipeline.classification.SimpleClassificationPipeline import get_hyperparameter_search_space [as 别名]
    def test_get_hyperparameter_search_space_preprocessor_contradicts_default_classifier(self):
        cs = SimpleClassificationPipeline.get_hyperparameter_search_space(
            include={'preprocessor': ['densifier']},
            dataset_properties={'sparse': True})
        self.assertEqual(cs.get_hyperparameter('classifier:__choice__').default,
                         'qda')

        cs = SimpleClassificationPipeline.get_hyperparameter_search_space(
            include={'preprocessor': ['nystroem_sampler']})
        self.assertEqual(cs.get_hyperparameter('classifier:__choice__').default,
                         'sgd')
开发者ID:Allen1203,项目名称:auto-sklearn,代码行数:13,代码来源:test_classification.py

示例3: test_predict_batched

# 需要导入模块: from autosklearn.pipeline.classification import SimpleClassificationPipeline [as 别名]
# 或者: from autosklearn.pipeline.classification.SimpleClassificationPipeline import get_hyperparameter_search_space [as 别名]
    def test_predict_batched(self):
        cs = SimpleClassificationPipeline.get_hyperparameter_search_space()
        default = cs.get_default_configuration()
        cls = SimpleClassificationPipeline(default)

        # Multiclass
        X_train, Y_train, X_test, Y_test = get_dataset(dataset="digits")
        cls.fit(X_train, Y_train)
        X_test_ = X_test.copy()
        prediction_ = cls.predict(X_test_)
        cls_predict = mock.Mock(wraps=cls.pipeline_)
        cls.pipeline_ = cls_predict
        prediction = cls.predict(X_test, batch_size=20)
        self.assertEqual((1647,), prediction.shape)
        self.assertEqual(83, cls_predict.predict.call_count)
        assert_array_almost_equal(prediction_, prediction)

        # Multilabel
        X_train, Y_train, X_test, Y_test = get_dataset(dataset="digits")
        Y_train = np.array(list([(list([1 if i != y else 0 for i in range(10)])) for y in Y_train]))
        cls.fit(X_train, Y_train)
        X_test_ = X_test.copy()
        prediction_ = cls.predict(X_test_)
        cls_predict = mock.Mock(wraps=cls.pipeline_)
        cls.pipeline_ = cls_predict
        prediction = cls.predict(X_test, batch_size=20)
        self.assertEqual((1647, 10), prediction.shape)
        self.assertEqual(83, cls_predict.predict.call_count)
        assert_array_almost_equal(prediction_, prediction)
开发者ID:Ayaro,项目名称:auto-sklearn,代码行数:31,代码来源:test_classification.py

示例4: test_configurations_signed_data

# 需要导入模块: from autosklearn.pipeline.classification import SimpleClassificationPipeline [as 别名]
# 或者: from autosklearn.pipeline.classification.SimpleClassificationPipeline import get_hyperparameter_search_space [as 别名]
    def test_configurations_signed_data(self):
        # Use a limit of ~4GiB
        limit = 4000 * 1024 * 1024
        resource.setrlimit(resource.RLIMIT_AS, (limit, limit))

        cs = SimpleClassificationPipeline.get_hyperparameter_search_space(
            dataset_properties={'signed': True})

        print(cs)

        for i in range(10):
            config = cs.sample_configuration()
            config._populate_values()
            if config['classifier:passive_aggressive:n_iter'] is not None:
                config._values['classifier:passive_aggressive:n_iter'] = 5
            if config['classifier:sgd:n_iter'] is not None:
                config._values['classifier:sgd:n_iter'] = 5

            X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits')
            cls = SimpleClassificationPipeline(config, random_state=1)
            print(config)
            try:
                cls.fit(X_train, Y_train)
                X_test_ = X_test.copy()
                predictions = cls.predict(X_test)
                self.assertIsInstance(predictions, np.ndarray)
                predicted_probabiliets = cls.predict_proba(X_test_)
                self.assertIsInstance(predicted_probabiliets, np.ndarray)
            except ValueError as e:
                if "Floating-point under-/overflow occurred at epoch" in \
                       e.args[0] or \
                       "removed all features" in e.args[0] or \
                                "all features are discarded" in e.args[0]:
                    continue
                else:
                    print(config)
                    print(traceback.format_exc())
                    raise e
            except RuntimeWarning as e:
                if "invalid value encountered in sqrt" in e.args[0]:
                    continue
                elif "divide by zero encountered in" in e.args[0]:
                    continue
                elif "invalid value encountered in divide" in e.args[0]:
                    continue
                elif "invalid value encountered in true_divide" in e.args[0]:
                    continue
                else:
                    print(config)
                    print(traceback.format_exc())
                    raise e
            except UserWarning as e:
                if "FastICA did not converge" in e.args[0]:
                    continue
                else:
                    print(config)
                    print(traceback.format_exc())
                    raise e
            except MemoryError as e:
                continue
开发者ID:stokasto,项目名称:auto-sklearn,代码行数:62,代码来源:test_classification.py

示例5: test_add_preprocessor

# 需要导入模块: from autosklearn.pipeline.classification import SimpleClassificationPipeline [as 别名]
# 或者: from autosklearn.pipeline.classification.SimpleClassificationPipeline import get_hyperparameter_search_space [as 别名]
 def test_add_preprocessor(self):
     self.assertEqual(len(preprocessing_components._addons.components), 0)
     preprocessing_components.add_preprocessor(DummyPreprocessor)
     self.assertEqual(len(preprocessing_components._addons.components), 1)
     cs = SimpleClassificationPipeline.get_hyperparameter_search_space()
     self.assertIn("DummyPreprocessor", str(cs))
     del preprocessing_components._addons.components["DummyPreprocessor"]
开发者ID:Ayaro,项目名称:auto-sklearn,代码行数:9,代码来源:test_classification.py

示例6: _get_classification_configuration_space

# 需要导入模块: from autosklearn.pipeline.classification import SimpleClassificationPipeline [as 别名]
# 或者: from autosklearn.pipeline.classification.SimpleClassificationPipeline import get_hyperparameter_search_space [as 别名]
def _get_classification_configuration_space(info, include):
    task_type = info['task']

    multilabel = False
    multiclass = False
    sparse = False

    if task_type == MULTILABEL_CLASSIFICATION:
        multilabel = True
    if task_type == REGRESSION:
        raise NotImplementedError()
    if task_type == MULTICLASS_CLASSIFICATION:
        multiclass = True
    if task_type == BINARY_CLASSIFICATION:
        pass

    if info['is_sparse'] == 1:
        sparse = True

    dataset_properties = {
        'multilabel': multilabel,
        'multiclass': multiclass,
        'sparse': sparse
    }

    return SimpleClassificationPipeline.get_hyperparameter_search_space(
        dataset_properties=dataset_properties,
        include=include)
开发者ID:Allen1203,项目名称:auto-sklearn,代码行数:30,代码来源:pipeline.py

示例7: test_add_classifier

# 需要导入模块: from autosklearn.pipeline.classification import SimpleClassificationPipeline [as 别名]
# 或者: from autosklearn.pipeline.classification.SimpleClassificationPipeline import get_hyperparameter_search_space [as 别名]
 def test_add_classifier(self):
     self.assertEqual(len(classification_components._addons.components), 0)
     classification_components.add_classifier(DummyClassifier)
     self.assertEqual(len(classification_components._addons.components), 1)
     cs = SimpleClassificationPipeline.get_hyperparameter_search_space()
     self.assertIn("DummyClassifier", str(cs))
     del classification_components._addons.components["DummyClassifier"]
开发者ID:Ayaro,项目名称:auto-sklearn,代码行数:9,代码来源:test_classification.py

示例8: test_predict_proba_batched

# 需要导入模块: from autosklearn.pipeline.classification import SimpleClassificationPipeline [as 别名]
# 或者: from autosklearn.pipeline.classification.SimpleClassificationPipeline import get_hyperparameter_search_space [as 别名]
    def test_predict_proba_batched(self):
        cs = SimpleClassificationPipeline.get_hyperparameter_search_space()
        default = cs.get_default_configuration()

        # Multiclass
        cls = SimpleClassificationPipeline(default)
        X_train, Y_train, X_test, Y_test = get_dataset(dataset="digits")
        cls.fit(X_train, Y_train)
        X_test_ = X_test.copy()
        prediction_ = cls.predict_proba(X_test_)
        # The object behind the last step in the pipeline
        cls_predict = mock.Mock(wraps=cls.pipeline_.steps[-1][1])
        cls.pipeline_.steps[-1] = ("estimator", cls_predict)
        prediction = cls.predict_proba(X_test, batch_size=20)
        self.assertEqual((1647, 10), prediction.shape)
        self.assertEqual(84, cls_predict.predict_proba.call_count)
        assert_array_almost_equal(prediction_, prediction)

        # Multilabel
        cls = SimpleClassificationPipeline(default)
        X_train, Y_train, X_test, Y_test = get_dataset(dataset="digits")
        Y_train = np.array(list([(list([1 if i != y else 0 for i in range(10)])) for y in Y_train]))
        cls.fit(X_train, Y_train)
        X_test_ = X_test.copy()
        prediction_ = cls.predict_proba(X_test_)
        cls_predict = mock.Mock(wraps=cls.pipeline_.steps[-1][1])
        cls.pipeline_.steps[-1] = ("estimator", cls_predict)
        prediction = cls.predict_proba(X_test, batch_size=20)
        self.assertIsInstance(prediction, np.ndarray)
        self.assertEqual(prediction.shape, ((1647, 10)))
        self.assertEqual(84, cls_predict.predict_proba.call_count)
        assert_array_almost_equal(prediction_, prediction)
开发者ID:Ayaro,项目名称:auto-sklearn,代码行数:34,代码来源:test_classification.py

示例9: test_predict_proba_batched

# 需要导入模块: from autosklearn.pipeline.classification import SimpleClassificationPipeline [as 别名]
# 或者: from autosklearn.pipeline.classification.SimpleClassificationPipeline import get_hyperparameter_search_space [as 别名]
    def test_predict_proba_batched(self):
        cs = SimpleClassificationPipeline.get_hyperparameter_search_space()
        default = cs.get_default_configuration()

        # Multiclass
        cls = SimpleClassificationPipeline(default)
        X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits')
        cls.fit(X_train, Y_train)
        X_test_ = X_test.copy()
        prediction_ = cls.predict_proba(X_test_)
        # The object behind the last step in the pipeline
        cls_predict = mock.Mock(wraps=cls.pipeline_.steps[-1][1])
        cls.pipeline_.steps[-1] = ("estimator", cls_predict)
        prediction = cls.predict_proba(X_test, batch_size=20)
        self.assertEqual((1647, 10), prediction.shape)
        self.assertEqual(84, cls_predict.predict_proba.call_count)
        assert_array_almost_equal(prediction_, prediction)

        # Multilabel
        cls = SimpleClassificationPipeline(default)
        X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits')
        Y_train_ = np.zeros((Y_train.shape[0], 10))
        for i, y in enumerate(Y_train):
            Y_train_[i][y] = 1
        Y_train = Y_train_
        cls.fit(X_train, Y_train)
        X_test_ = X_test.copy()
        prediction_ = cls.predict_proba(X_test_)
        cls_predict = mock.Mock(wraps=cls.pipeline_.steps[-1][1])
        cls.pipeline_.steps[-1] = ("estimator", cls_predict)
        prediction = cls.predict_proba(X_test, batch_size=20)
        self.assertIsInstance(prediction, np.ndarray)
        self.assertEqual(prediction.shape, ((1647, 10)))
        self.assertEqual(84, cls_predict.predict_proba.call_count)
        assert_array_almost_equal(prediction_, prediction)
开发者ID:Allen1203,项目名称:auto-sklearn,代码行数:37,代码来源:test_classification.py

示例10: test_default_configuration_multilabel

# 需要导入模块: from autosklearn.pipeline.classification import SimpleClassificationPipeline [as 别名]
# 或者: from autosklearn.pipeline.classification.SimpleClassificationPipeline import get_hyperparameter_search_space [as 别名]
 def test_default_configuration_multilabel(self):
     for i in range(2):
         cs = SimpleClassificationPipeline.get_hyperparameter_search_space(dataset_properties={"multilabel": True})
         default = cs.get_default_configuration()
         X_train, Y_train, X_test, Y_test = get_dataset(dataset="iris", make_multilabel=True)
         auto = SimpleClassificationPipeline(default)
         auto = auto.fit(X_train, Y_train)
         predictions = auto.predict(X_test)
         self.assertAlmostEqual(0.9599999999999995, sklearn.metrics.accuracy_score(predictions, Y_test))
         scores = auto.predict_proba(X_test)
开发者ID:Ayaro,项目名称:auto-sklearn,代码行数:12,代码来源:test_classification.py

示例11: test_get_hyperparameter_search_space_dataset_properties

# 需要导入模块: from autosklearn.pipeline.classification import SimpleClassificationPipeline [as 别名]
# 或者: from autosklearn.pipeline.classification.SimpleClassificationPipeline import get_hyperparameter_search_space [as 别名]
    def test_get_hyperparameter_search_space_dataset_properties(self):
        cs_mc = SimpleClassificationPipeline.get_hyperparameter_search_space(dataset_properties={"multiclass": True})
        self.assertNotIn("bernoulli_nb", str(cs_mc))

        cs_ml = SimpleClassificationPipeline.get_hyperparameter_search_space(dataset_properties={"multilabel": True})
        self.assertNotIn("k_nearest_neighbors", str(cs_ml))
        self.assertNotIn("liblinear", str(cs_ml))
        self.assertNotIn("libsvm_svc", str(cs_ml))
        self.assertNotIn("sgd", str(cs_ml))

        cs_sp = SimpleClassificationPipeline.get_hyperparameter_search_space(dataset_properties={"sparse": True})
        self.assertIn("extra_trees", str(cs_sp))
        self.assertIn("gradient_boosting", str(cs_sp))
        self.assertIn("random_forest", str(cs_sp))

        cs_mc_ml = SimpleClassificationPipeline.get_hyperparameter_search_space(
            dataset_properties={"multilabel": True, "multiclass": True}
        )
        self.assertEqual(cs_ml, cs_mc_ml)
开发者ID:Ayaro,项目名称:auto-sklearn,代码行数:21,代码来源:test_classification.py

示例12: test_get_hyperparameter_search_space_include_exclude_models

# 需要导入模块: from autosklearn.pipeline.classification import SimpleClassificationPipeline [as 别名]
# 或者: from autosklearn.pipeline.classification.SimpleClassificationPipeline import get_hyperparameter_search_space [as 别名]
    def test_get_hyperparameter_search_space_include_exclude_models(self):
        cs = SimpleClassificationPipeline.get_hyperparameter_search_space(
            include={'classifier': ['libsvm_svc']})
        self.assertEqual(cs.get_hyperparameter('classifier:__choice__'),
            CategoricalHyperparameter('classifier:__choice__', ['libsvm_svc']))

        cs = SimpleClassificationPipeline.get_hyperparameter_search_space(
            exclude={'classifier': ['libsvm_svc']})
        self.assertNotIn('libsvm_svc', str(cs))

        cs = SimpleClassificationPipeline.get_hyperparameter_search_space(
            include={'preprocessor': ['select_percentile_classification']})
        self.assertEqual(cs.get_hyperparameter('preprocessor:__choice__'),
            CategoricalHyperparameter('preprocessor:__choice__',
                                      ['select_percentile_classification']))

        cs = SimpleClassificationPipeline.get_hyperparameter_search_space(
            exclude={'preprocessor': ['select_percentile_classification']})
        self.assertNotIn('select_percentile_classification', str(cs))
开发者ID:Allen1203,项目名称:auto-sklearn,代码行数:21,代码来源:test_classification.py

示例13: test_predict_proba_batched_sparse

# 需要导入模块: from autosklearn.pipeline.classification import SimpleClassificationPipeline [as 别名]
# 或者: from autosklearn.pipeline.classification.SimpleClassificationPipeline import get_hyperparameter_search_space [as 别名]
    def test_predict_proba_batched_sparse(self):
        cs = SimpleClassificationPipeline.get_hyperparameter_search_space(
            dataset_properties={'sparse': True})

        config = Configuration(cs,
                               values={"balancing:strategy": "none",
                                       "classifier:__choice__": "random_forest",
                                       "imputation:strategy": "mean",
                                       "one_hot_encoding:minimum_fraction": 0.01,
                                       "one_hot_encoding:use_minimum_fraction": 'True',
                                       "preprocessor:__choice__": "no_preprocessing",
                                       'classifier:random_forest:bootstrap': 'True',
                                       'classifier:random_forest:criterion': 'gini',
                                       'classifier:random_forest:max_depth': 'None',
                                       'classifier:random_forest:min_samples_split': 2,
                                       'classifier:random_forest:min_samples_leaf': 2,
                                       'classifier:random_forest:min_weight_fraction_leaf': 0.0,
                                       'classifier:random_forest:max_features': 0.5,
                                       'classifier:random_forest:max_leaf_nodes': 'None',
                                       'classifier:random_forest:n_estimators': 100,
                                       "rescaling:__choice__": "min/max"})

        # Multiclass
        cls = SimpleClassificationPipeline(config)
        X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits',
                                                       make_sparse=True)
        cls.fit(X_train, Y_train)
        X_test_ = X_test.copy()
        prediction_ = cls.predict_proba(X_test_)
        # The object behind the last step in the pipeline
        cls_predict = mock.Mock(wraps=cls.pipeline_.steps[-1][1])
        cls.pipeline_.steps[-1] = ("estimator", cls_predict)
        prediction = cls.predict_proba(X_test, batch_size=20)
        self.assertEqual((1647, 10), prediction.shape)
        self.assertEqual(84, cls_predict.predict_proba.call_count)
        assert_array_almost_equal(prediction_, prediction)

        # Multilabel
        cls = SimpleClassificationPipeline(config)
        X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits',
                                                       make_sparse=True)
        Y_train_ = np.zeros((Y_train.shape[0], 10))
        for i, y in enumerate(Y_train):
            Y_train_[i][y] = 1
        Y_train = Y_train_
        cls.fit(X_train, Y_train)
        X_test_ = X_test.copy()
        prediction_ = cls.predict_proba(X_test_)
        cls_predict = mock.Mock(wraps=cls.pipeline_.steps[-1][1])
        cls.pipeline_.steps[-1] = ("estimator", cls_predict)
        prediction = cls.predict_proba(X_test, batch_size=20)
        self.assertEqual(prediction.shape, ((1647, 10)))
        self.assertIsInstance(prediction, np.ndarray)
        self.assertEqual(84, cls_predict.predict_proba.call_count)
        assert_array_almost_equal(prediction_, prediction)
开发者ID:Allen1203,项目名称:auto-sklearn,代码行数:57,代码来源:test_classification.py

示例14: test_configurations_sparse

# 需要导入模块: from autosklearn.pipeline.classification import SimpleClassificationPipeline [as 别名]
# 或者: from autosklearn.pipeline.classification.SimpleClassificationPipeline import get_hyperparameter_search_space [as 别名]
    def test_configurations_sparse(self):
        # Use a limit of ~4GiB
        limit = 4000 * 1024 * 1024
        resource.setrlimit(resource.RLIMIT_AS, (limit, limit))

        cs = SimpleClassificationPipeline.get_hyperparameter_search_space(
            dataset_properties={'sparse': True})
        print(cs)
        for i in range(10):
            config = cs.sample_configuration()
            config._populate_values()
            if 'classifier:passive_aggressive:n_iter' in config and \
                    config['classifier:passive_aggressive:n_iter'] is not None:
                config._values['classifier:passive_aggressive:n_iter'] = 5
            if 'classifier:sgd:n_iter' in config and \
                    config['classifier:sgd:n_iter'] is not None:
                config._values['classifier:sgd:n_iter'] = 5

            print(config)
            X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits',
                                                           make_sparse=True)
            cls = SimpleClassificationPipeline(config, random_state=1)
            try:
                cls.fit(X_train, Y_train)
                predictions = cls.predict(X_test)
            except ValueError as e:
                if "Floating-point under-/overflow occurred at epoch" in \
                       e.args[0] or \
                        "removed all features" in e.args[0] or \
                                "all features are discarded" in e.args[0]:
                    continue
                else:
                    print(config)
                    traceback.print_tb(sys.exc_info()[2])
                    raise e
            except RuntimeWarning as e:
                if "invalid value encountered in sqrt" in e.args[0]:
                    continue
                elif "divide by zero encountered in" in e.args[0]:
                    continue
                elif "invalid value encountered in divide" in e.args[0]:
                    continue
                elif "invalid value encountered in true_divide" in e.args[0]:
                    continue
                else:
                    print(config)
                    raise e
            except UserWarning as e:
                if "FastICA did not converge" in e.args[0]:
                    continue
                else:
                    print(config)
                    raise e
开发者ID:Allen1203,项目名称:auto-sklearn,代码行数:55,代码来源:test_classification.py

示例15: test_predict_proba_batched_sparse

# 需要导入模块: from autosklearn.pipeline.classification import SimpleClassificationPipeline [as 别名]
# 或者: from autosklearn.pipeline.classification.SimpleClassificationPipeline import get_hyperparameter_search_space [as 别名]
    def test_predict_proba_batched_sparse(self):
        cs = SimpleClassificationPipeline.get_hyperparameter_search_space(dataset_properties={"sparse": True})

        config = Configuration(
            cs,
            values={
                "balancing:strategy": "none",
                "classifier:__choice__": "random_forest",
                "imputation:strategy": "mean",
                "one_hot_encoding:minimum_fraction": 0.01,
                "one_hot_encoding:use_minimum_fraction": "True",
                "preprocessor:__choice__": "no_preprocessing",
                "classifier:random_forest:bootstrap": "True",
                "classifier:random_forest:criterion": "gini",
                "classifier:random_forest:max_depth": "None",
                "classifier:random_forest:min_samples_split": 2,
                "classifier:random_forest:min_samples_leaf": 2,
                "classifier:random_forest:min_weight_fraction_leaf": 0.0,
                "classifier:random_forest:max_features": 0.5,
                "classifier:random_forest:max_leaf_nodes": "None",
                "classifier:random_forest:n_estimators": 100,
                "rescaling:__choice__": "min/max",
            },
        )

        # Multiclass
        cls = SimpleClassificationPipeline(config)
        X_train, Y_train, X_test, Y_test = get_dataset(dataset="digits", make_sparse=True)
        cls.fit(X_train, Y_train)
        X_test_ = X_test.copy()
        prediction_ = cls.predict_proba(X_test_)
        # The object behind the last step in the pipeline
        cls_predict = mock.Mock(wraps=cls.pipeline_.steps[-1][1])
        cls.pipeline_.steps[-1] = ("estimator", cls_predict)
        prediction = cls.predict_proba(X_test, batch_size=20)
        self.assertEqual((1647, 10), prediction.shape)
        self.assertEqual(84, cls_predict.predict_proba.call_count)
        assert_array_almost_equal(prediction_, prediction)

        # Multilabel
        cls = SimpleClassificationPipeline(config)
        X_train, Y_train, X_test, Y_test = get_dataset(dataset="digits", make_sparse=True)
        Y_train = np.array(list([(list([1 if i != y else 0 for i in range(10)])) for y in Y_train]))
        cls.fit(X_train, Y_train)
        X_test_ = X_test.copy()
        prediction_ = cls.predict_proba(X_test_)
        cls_predict = mock.Mock(wraps=cls.pipeline_.steps[-1][1])
        cls.pipeline_.steps[-1] = ("estimator", cls_predict)
        prediction = cls.predict_proba(X_test, batch_size=20)
        self.assertEqual(prediction.shape, ((1647, 10)))
        self.assertIsInstance(prediction, np.ndarray)
        self.assertEqual(84, cls_predict.predict_proba.call_count)
        assert_array_almost_equal(prediction_, prediction)
开发者ID:Ayaro,项目名称:auto-sklearn,代码行数:55,代码来源:test_classification.py


注:本文中的autosklearn.pipeline.classification.SimpleClassificationPipeline.get_hyperparameter_search_space方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。