本文整理汇总了Python中autosklearn.pipeline.classification.SimpleClassificationPipeline.get_hyperparameter_search_space方法的典型用法代码示例。如果您正苦于以下问题:Python SimpleClassificationPipeline.get_hyperparameter_search_space方法的具体用法?Python SimpleClassificationPipeline.get_hyperparameter_search_space怎么用?Python SimpleClassificationPipeline.get_hyperparameter_search_space使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类autosklearn.pipeline.classification.SimpleClassificationPipeline
的用法示例。
在下文中一共展示了SimpleClassificationPipeline.get_hyperparameter_search_space方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_get_hyperparameter_search_space_preprocessor_contradicts_default_classifier
# 需要导入模块: from autosklearn.pipeline.classification import SimpleClassificationPipeline [as 别名]
# 或者: from autosklearn.pipeline.classification.SimpleClassificationPipeline import get_hyperparameter_search_space [as 别名]
def test_get_hyperparameter_search_space_preprocessor_contradicts_default_classifier(self):
cs = SimpleClassificationPipeline.get_hyperparameter_search_space(
include={"preprocessor": ["densifier"]}, dataset_properties={"sparse": True}
)
self.assertEqual(cs.get_hyperparameter("classifier:__choice__").default, "qda")
cs = SimpleClassificationPipeline.get_hyperparameter_search_space(
include={"preprocessor": ["nystroem_sampler"]}
)
self.assertEqual(cs.get_hyperparameter("classifier:__choice__").default, "sgd")
示例2: test_get_hyperparameter_search_space_preprocessor_contradicts_default_classifier
# 需要导入模块: from autosklearn.pipeline.classification import SimpleClassificationPipeline [as 别名]
# 或者: from autosklearn.pipeline.classification.SimpleClassificationPipeline import get_hyperparameter_search_space [as 别名]
def test_get_hyperparameter_search_space_preprocessor_contradicts_default_classifier(self):
cs = SimpleClassificationPipeline.get_hyperparameter_search_space(
include={'preprocessor': ['densifier']},
dataset_properties={'sparse': True})
self.assertEqual(cs.get_hyperparameter('classifier:__choice__').default,
'qda')
cs = SimpleClassificationPipeline.get_hyperparameter_search_space(
include={'preprocessor': ['nystroem_sampler']})
self.assertEqual(cs.get_hyperparameter('classifier:__choice__').default,
'sgd')
示例3: test_predict_batched
# 需要导入模块: from autosklearn.pipeline.classification import SimpleClassificationPipeline [as 别名]
# 或者: from autosklearn.pipeline.classification.SimpleClassificationPipeline import get_hyperparameter_search_space [as 别名]
def test_predict_batched(self):
cs = SimpleClassificationPipeline.get_hyperparameter_search_space()
default = cs.get_default_configuration()
cls = SimpleClassificationPipeline(default)
# Multiclass
X_train, Y_train, X_test, Y_test = get_dataset(dataset="digits")
cls.fit(X_train, Y_train)
X_test_ = X_test.copy()
prediction_ = cls.predict(X_test_)
cls_predict = mock.Mock(wraps=cls.pipeline_)
cls.pipeline_ = cls_predict
prediction = cls.predict(X_test, batch_size=20)
self.assertEqual((1647,), prediction.shape)
self.assertEqual(83, cls_predict.predict.call_count)
assert_array_almost_equal(prediction_, prediction)
# Multilabel
X_train, Y_train, X_test, Y_test = get_dataset(dataset="digits")
Y_train = np.array(list([(list([1 if i != y else 0 for i in range(10)])) for y in Y_train]))
cls.fit(X_train, Y_train)
X_test_ = X_test.copy()
prediction_ = cls.predict(X_test_)
cls_predict = mock.Mock(wraps=cls.pipeline_)
cls.pipeline_ = cls_predict
prediction = cls.predict(X_test, batch_size=20)
self.assertEqual((1647, 10), prediction.shape)
self.assertEqual(83, cls_predict.predict.call_count)
assert_array_almost_equal(prediction_, prediction)
示例4: test_configurations_signed_data
# 需要导入模块: from autosklearn.pipeline.classification import SimpleClassificationPipeline [as 别名]
# 或者: from autosklearn.pipeline.classification.SimpleClassificationPipeline import get_hyperparameter_search_space [as 别名]
def test_configurations_signed_data(self):
# Use a limit of ~4GiB
limit = 4000 * 1024 * 1024
resource.setrlimit(resource.RLIMIT_AS, (limit, limit))
cs = SimpleClassificationPipeline.get_hyperparameter_search_space(
dataset_properties={'signed': True})
print(cs)
for i in range(10):
config = cs.sample_configuration()
config._populate_values()
if config['classifier:passive_aggressive:n_iter'] is not None:
config._values['classifier:passive_aggressive:n_iter'] = 5
if config['classifier:sgd:n_iter'] is not None:
config._values['classifier:sgd:n_iter'] = 5
X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits')
cls = SimpleClassificationPipeline(config, random_state=1)
print(config)
try:
cls.fit(X_train, Y_train)
X_test_ = X_test.copy()
predictions = cls.predict(X_test)
self.assertIsInstance(predictions, np.ndarray)
predicted_probabiliets = cls.predict_proba(X_test_)
self.assertIsInstance(predicted_probabiliets, np.ndarray)
except ValueError as e:
if "Floating-point under-/overflow occurred at epoch" in \
e.args[0] or \
"removed all features" in e.args[0] or \
"all features are discarded" in e.args[0]:
continue
else:
print(config)
print(traceback.format_exc())
raise e
except RuntimeWarning as e:
if "invalid value encountered in sqrt" in e.args[0]:
continue
elif "divide by zero encountered in" in e.args[0]:
continue
elif "invalid value encountered in divide" in e.args[0]:
continue
elif "invalid value encountered in true_divide" in e.args[0]:
continue
else:
print(config)
print(traceback.format_exc())
raise e
except UserWarning as e:
if "FastICA did not converge" in e.args[0]:
continue
else:
print(config)
print(traceback.format_exc())
raise e
except MemoryError as e:
continue
示例5: test_add_preprocessor
# 需要导入模块: from autosklearn.pipeline.classification import SimpleClassificationPipeline [as 别名]
# 或者: from autosklearn.pipeline.classification.SimpleClassificationPipeline import get_hyperparameter_search_space [as 别名]
def test_add_preprocessor(self):
self.assertEqual(len(preprocessing_components._addons.components), 0)
preprocessing_components.add_preprocessor(DummyPreprocessor)
self.assertEqual(len(preprocessing_components._addons.components), 1)
cs = SimpleClassificationPipeline.get_hyperparameter_search_space()
self.assertIn("DummyPreprocessor", str(cs))
del preprocessing_components._addons.components["DummyPreprocessor"]
示例6: _get_classification_configuration_space
# 需要导入模块: from autosklearn.pipeline.classification import SimpleClassificationPipeline [as 别名]
# 或者: from autosklearn.pipeline.classification.SimpleClassificationPipeline import get_hyperparameter_search_space [as 别名]
def _get_classification_configuration_space(info, include):
task_type = info['task']
multilabel = False
multiclass = False
sparse = False
if task_type == MULTILABEL_CLASSIFICATION:
multilabel = True
if task_type == REGRESSION:
raise NotImplementedError()
if task_type == MULTICLASS_CLASSIFICATION:
multiclass = True
if task_type == BINARY_CLASSIFICATION:
pass
if info['is_sparse'] == 1:
sparse = True
dataset_properties = {
'multilabel': multilabel,
'multiclass': multiclass,
'sparse': sparse
}
return SimpleClassificationPipeline.get_hyperparameter_search_space(
dataset_properties=dataset_properties,
include=include)
示例7: test_add_classifier
# 需要导入模块: from autosklearn.pipeline.classification import SimpleClassificationPipeline [as 别名]
# 或者: from autosklearn.pipeline.classification.SimpleClassificationPipeline import get_hyperparameter_search_space [as 别名]
def test_add_classifier(self):
self.assertEqual(len(classification_components._addons.components), 0)
classification_components.add_classifier(DummyClassifier)
self.assertEqual(len(classification_components._addons.components), 1)
cs = SimpleClassificationPipeline.get_hyperparameter_search_space()
self.assertIn("DummyClassifier", str(cs))
del classification_components._addons.components["DummyClassifier"]
示例8: test_predict_proba_batched
# 需要导入模块: from autosklearn.pipeline.classification import SimpleClassificationPipeline [as 别名]
# 或者: from autosklearn.pipeline.classification.SimpleClassificationPipeline import get_hyperparameter_search_space [as 别名]
def test_predict_proba_batched(self):
cs = SimpleClassificationPipeline.get_hyperparameter_search_space()
default = cs.get_default_configuration()
# Multiclass
cls = SimpleClassificationPipeline(default)
X_train, Y_train, X_test, Y_test = get_dataset(dataset="digits")
cls.fit(X_train, Y_train)
X_test_ = X_test.copy()
prediction_ = cls.predict_proba(X_test_)
# The object behind the last step in the pipeline
cls_predict = mock.Mock(wraps=cls.pipeline_.steps[-1][1])
cls.pipeline_.steps[-1] = ("estimator", cls_predict)
prediction = cls.predict_proba(X_test, batch_size=20)
self.assertEqual((1647, 10), prediction.shape)
self.assertEqual(84, cls_predict.predict_proba.call_count)
assert_array_almost_equal(prediction_, prediction)
# Multilabel
cls = SimpleClassificationPipeline(default)
X_train, Y_train, X_test, Y_test = get_dataset(dataset="digits")
Y_train = np.array(list([(list([1 if i != y else 0 for i in range(10)])) for y in Y_train]))
cls.fit(X_train, Y_train)
X_test_ = X_test.copy()
prediction_ = cls.predict_proba(X_test_)
cls_predict = mock.Mock(wraps=cls.pipeline_.steps[-1][1])
cls.pipeline_.steps[-1] = ("estimator", cls_predict)
prediction = cls.predict_proba(X_test, batch_size=20)
self.assertIsInstance(prediction, np.ndarray)
self.assertEqual(prediction.shape, ((1647, 10)))
self.assertEqual(84, cls_predict.predict_proba.call_count)
assert_array_almost_equal(prediction_, prediction)
示例9: test_predict_proba_batched
# 需要导入模块: from autosklearn.pipeline.classification import SimpleClassificationPipeline [as 别名]
# 或者: from autosklearn.pipeline.classification.SimpleClassificationPipeline import get_hyperparameter_search_space [as 别名]
def test_predict_proba_batched(self):
cs = SimpleClassificationPipeline.get_hyperparameter_search_space()
default = cs.get_default_configuration()
# Multiclass
cls = SimpleClassificationPipeline(default)
X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits')
cls.fit(X_train, Y_train)
X_test_ = X_test.copy()
prediction_ = cls.predict_proba(X_test_)
# The object behind the last step in the pipeline
cls_predict = mock.Mock(wraps=cls.pipeline_.steps[-1][1])
cls.pipeline_.steps[-1] = ("estimator", cls_predict)
prediction = cls.predict_proba(X_test, batch_size=20)
self.assertEqual((1647, 10), prediction.shape)
self.assertEqual(84, cls_predict.predict_proba.call_count)
assert_array_almost_equal(prediction_, prediction)
# Multilabel
cls = SimpleClassificationPipeline(default)
X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits')
Y_train_ = np.zeros((Y_train.shape[0], 10))
for i, y in enumerate(Y_train):
Y_train_[i][y] = 1
Y_train = Y_train_
cls.fit(X_train, Y_train)
X_test_ = X_test.copy()
prediction_ = cls.predict_proba(X_test_)
cls_predict = mock.Mock(wraps=cls.pipeline_.steps[-1][1])
cls.pipeline_.steps[-1] = ("estimator", cls_predict)
prediction = cls.predict_proba(X_test, batch_size=20)
self.assertIsInstance(prediction, np.ndarray)
self.assertEqual(prediction.shape, ((1647, 10)))
self.assertEqual(84, cls_predict.predict_proba.call_count)
assert_array_almost_equal(prediction_, prediction)
示例10: test_default_configuration_multilabel
# 需要导入模块: from autosklearn.pipeline.classification import SimpleClassificationPipeline [as 别名]
# 或者: from autosklearn.pipeline.classification.SimpleClassificationPipeline import get_hyperparameter_search_space [as 别名]
def test_default_configuration_multilabel(self):
for i in range(2):
cs = SimpleClassificationPipeline.get_hyperparameter_search_space(dataset_properties={"multilabel": True})
default = cs.get_default_configuration()
X_train, Y_train, X_test, Y_test = get_dataset(dataset="iris", make_multilabel=True)
auto = SimpleClassificationPipeline(default)
auto = auto.fit(X_train, Y_train)
predictions = auto.predict(X_test)
self.assertAlmostEqual(0.9599999999999995, sklearn.metrics.accuracy_score(predictions, Y_test))
scores = auto.predict_proba(X_test)
示例11: test_get_hyperparameter_search_space_dataset_properties
# 需要导入模块: from autosklearn.pipeline.classification import SimpleClassificationPipeline [as 别名]
# 或者: from autosklearn.pipeline.classification.SimpleClassificationPipeline import get_hyperparameter_search_space [as 别名]
def test_get_hyperparameter_search_space_dataset_properties(self):
cs_mc = SimpleClassificationPipeline.get_hyperparameter_search_space(dataset_properties={"multiclass": True})
self.assertNotIn("bernoulli_nb", str(cs_mc))
cs_ml = SimpleClassificationPipeline.get_hyperparameter_search_space(dataset_properties={"multilabel": True})
self.assertNotIn("k_nearest_neighbors", str(cs_ml))
self.assertNotIn("liblinear", str(cs_ml))
self.assertNotIn("libsvm_svc", str(cs_ml))
self.assertNotIn("sgd", str(cs_ml))
cs_sp = SimpleClassificationPipeline.get_hyperparameter_search_space(dataset_properties={"sparse": True})
self.assertIn("extra_trees", str(cs_sp))
self.assertIn("gradient_boosting", str(cs_sp))
self.assertIn("random_forest", str(cs_sp))
cs_mc_ml = SimpleClassificationPipeline.get_hyperparameter_search_space(
dataset_properties={"multilabel": True, "multiclass": True}
)
self.assertEqual(cs_ml, cs_mc_ml)
示例12: test_get_hyperparameter_search_space_include_exclude_models
# 需要导入模块: from autosklearn.pipeline.classification import SimpleClassificationPipeline [as 别名]
# 或者: from autosklearn.pipeline.classification.SimpleClassificationPipeline import get_hyperparameter_search_space [as 别名]
def test_get_hyperparameter_search_space_include_exclude_models(self):
cs = SimpleClassificationPipeline.get_hyperparameter_search_space(
include={'classifier': ['libsvm_svc']})
self.assertEqual(cs.get_hyperparameter('classifier:__choice__'),
CategoricalHyperparameter('classifier:__choice__', ['libsvm_svc']))
cs = SimpleClassificationPipeline.get_hyperparameter_search_space(
exclude={'classifier': ['libsvm_svc']})
self.assertNotIn('libsvm_svc', str(cs))
cs = SimpleClassificationPipeline.get_hyperparameter_search_space(
include={'preprocessor': ['select_percentile_classification']})
self.assertEqual(cs.get_hyperparameter('preprocessor:__choice__'),
CategoricalHyperparameter('preprocessor:__choice__',
['select_percentile_classification']))
cs = SimpleClassificationPipeline.get_hyperparameter_search_space(
exclude={'preprocessor': ['select_percentile_classification']})
self.assertNotIn('select_percentile_classification', str(cs))
示例13: test_predict_proba_batched_sparse
# 需要导入模块: from autosklearn.pipeline.classification import SimpleClassificationPipeline [as 别名]
# 或者: from autosklearn.pipeline.classification.SimpleClassificationPipeline import get_hyperparameter_search_space [as 别名]
def test_predict_proba_batched_sparse(self):
cs = SimpleClassificationPipeline.get_hyperparameter_search_space(
dataset_properties={'sparse': True})
config = Configuration(cs,
values={"balancing:strategy": "none",
"classifier:__choice__": "random_forest",
"imputation:strategy": "mean",
"one_hot_encoding:minimum_fraction": 0.01,
"one_hot_encoding:use_minimum_fraction": 'True',
"preprocessor:__choice__": "no_preprocessing",
'classifier:random_forest:bootstrap': 'True',
'classifier:random_forest:criterion': 'gini',
'classifier:random_forest:max_depth': 'None',
'classifier:random_forest:min_samples_split': 2,
'classifier:random_forest:min_samples_leaf': 2,
'classifier:random_forest:min_weight_fraction_leaf': 0.0,
'classifier:random_forest:max_features': 0.5,
'classifier:random_forest:max_leaf_nodes': 'None',
'classifier:random_forest:n_estimators': 100,
"rescaling:__choice__": "min/max"})
# Multiclass
cls = SimpleClassificationPipeline(config)
X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits',
make_sparse=True)
cls.fit(X_train, Y_train)
X_test_ = X_test.copy()
prediction_ = cls.predict_proba(X_test_)
# The object behind the last step in the pipeline
cls_predict = mock.Mock(wraps=cls.pipeline_.steps[-1][1])
cls.pipeline_.steps[-1] = ("estimator", cls_predict)
prediction = cls.predict_proba(X_test, batch_size=20)
self.assertEqual((1647, 10), prediction.shape)
self.assertEqual(84, cls_predict.predict_proba.call_count)
assert_array_almost_equal(prediction_, prediction)
# Multilabel
cls = SimpleClassificationPipeline(config)
X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits',
make_sparse=True)
Y_train_ = np.zeros((Y_train.shape[0], 10))
for i, y in enumerate(Y_train):
Y_train_[i][y] = 1
Y_train = Y_train_
cls.fit(X_train, Y_train)
X_test_ = X_test.copy()
prediction_ = cls.predict_proba(X_test_)
cls_predict = mock.Mock(wraps=cls.pipeline_.steps[-1][1])
cls.pipeline_.steps[-1] = ("estimator", cls_predict)
prediction = cls.predict_proba(X_test, batch_size=20)
self.assertEqual(prediction.shape, ((1647, 10)))
self.assertIsInstance(prediction, np.ndarray)
self.assertEqual(84, cls_predict.predict_proba.call_count)
assert_array_almost_equal(prediction_, prediction)
示例14: test_configurations_sparse
# 需要导入模块: from autosklearn.pipeline.classification import SimpleClassificationPipeline [as 别名]
# 或者: from autosklearn.pipeline.classification.SimpleClassificationPipeline import get_hyperparameter_search_space [as 别名]
def test_configurations_sparse(self):
# Use a limit of ~4GiB
limit = 4000 * 1024 * 1024
resource.setrlimit(resource.RLIMIT_AS, (limit, limit))
cs = SimpleClassificationPipeline.get_hyperparameter_search_space(
dataset_properties={'sparse': True})
print(cs)
for i in range(10):
config = cs.sample_configuration()
config._populate_values()
if 'classifier:passive_aggressive:n_iter' in config and \
config['classifier:passive_aggressive:n_iter'] is not None:
config._values['classifier:passive_aggressive:n_iter'] = 5
if 'classifier:sgd:n_iter' in config and \
config['classifier:sgd:n_iter'] is not None:
config._values['classifier:sgd:n_iter'] = 5
print(config)
X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits',
make_sparse=True)
cls = SimpleClassificationPipeline(config, random_state=1)
try:
cls.fit(X_train, Y_train)
predictions = cls.predict(X_test)
except ValueError as e:
if "Floating-point under-/overflow occurred at epoch" in \
e.args[0] or \
"removed all features" in e.args[0] or \
"all features are discarded" in e.args[0]:
continue
else:
print(config)
traceback.print_tb(sys.exc_info()[2])
raise e
except RuntimeWarning as e:
if "invalid value encountered in sqrt" in e.args[0]:
continue
elif "divide by zero encountered in" in e.args[0]:
continue
elif "invalid value encountered in divide" in e.args[0]:
continue
elif "invalid value encountered in true_divide" in e.args[0]:
continue
else:
print(config)
raise e
except UserWarning as e:
if "FastICA did not converge" in e.args[0]:
continue
else:
print(config)
raise e
示例15: test_predict_proba_batched_sparse
# 需要导入模块: from autosklearn.pipeline.classification import SimpleClassificationPipeline [as 别名]
# 或者: from autosklearn.pipeline.classification.SimpleClassificationPipeline import get_hyperparameter_search_space [as 别名]
def test_predict_proba_batched_sparse(self):
cs = SimpleClassificationPipeline.get_hyperparameter_search_space(dataset_properties={"sparse": True})
config = Configuration(
cs,
values={
"balancing:strategy": "none",
"classifier:__choice__": "random_forest",
"imputation:strategy": "mean",
"one_hot_encoding:minimum_fraction": 0.01,
"one_hot_encoding:use_minimum_fraction": "True",
"preprocessor:__choice__": "no_preprocessing",
"classifier:random_forest:bootstrap": "True",
"classifier:random_forest:criterion": "gini",
"classifier:random_forest:max_depth": "None",
"classifier:random_forest:min_samples_split": 2,
"classifier:random_forest:min_samples_leaf": 2,
"classifier:random_forest:min_weight_fraction_leaf": 0.0,
"classifier:random_forest:max_features": 0.5,
"classifier:random_forest:max_leaf_nodes": "None",
"classifier:random_forest:n_estimators": 100,
"rescaling:__choice__": "min/max",
},
)
# Multiclass
cls = SimpleClassificationPipeline(config)
X_train, Y_train, X_test, Y_test = get_dataset(dataset="digits", make_sparse=True)
cls.fit(X_train, Y_train)
X_test_ = X_test.copy()
prediction_ = cls.predict_proba(X_test_)
# The object behind the last step in the pipeline
cls_predict = mock.Mock(wraps=cls.pipeline_.steps[-1][1])
cls.pipeline_.steps[-1] = ("estimator", cls_predict)
prediction = cls.predict_proba(X_test, batch_size=20)
self.assertEqual((1647, 10), prediction.shape)
self.assertEqual(84, cls_predict.predict_proba.call_count)
assert_array_almost_equal(prediction_, prediction)
# Multilabel
cls = SimpleClassificationPipeline(config)
X_train, Y_train, X_test, Y_test = get_dataset(dataset="digits", make_sparse=True)
Y_train = np.array(list([(list([1 if i != y else 0 for i in range(10)])) for y in Y_train]))
cls.fit(X_train, Y_train)
X_test_ = X_test.copy()
prediction_ = cls.predict_proba(X_test_)
cls_predict = mock.Mock(wraps=cls.pipeline_.steps[-1][1])
cls.pipeline_.steps[-1] = ("estimator", cls_predict)
prediction = cls.predict_proba(X_test, batch_size=20)
self.assertEqual(prediction.shape, ((1647, 10)))
self.assertIsInstance(prediction, np.ndarray)
self.assertEqual(84, cls_predict.predict_proba.call_count)
assert_array_almost_equal(prediction_, prediction)