本文整理汇总了Python中ase.io.trajectory.PickleTrajectory.write方法的典型用法代码示例。如果您正苦于以下问题:Python PickleTrajectory.write方法的具体用法?Python PickleTrajectory.write怎么用?Python PickleTrajectory.write使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类ase.io.trajectory.PickleTrajectory
的用法示例。
在下文中一共展示了PickleTrajectory.write方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: eos
# 需要导入模块: from ase.io.trajectory import PickleTrajectory [as 别名]
# 或者: from ase.io.trajectory.PickleTrajectory import write [as 别名]
def eos(self, atoms, name):
opts = self.opts
traj = PickleTrajectory(self.get_filename(name, 'traj'), 'w', atoms)
eps = 0.01
strains = np.linspace(1 - eps, 1 + eps, 5)
v1 = atoms.get_volume()
volumes = strains**3 * v1
energies = []
cell1 = atoms.cell
for s in strains:
atoms.set_cell(cell1 * s, scale_atoms=True)
energies.append(atoms.get_potential_energy())
traj.write(atoms)
traj.close()
eos = EquationOfState(volumes, energies, opts.eos_type)
v0, e0, B = eos.fit()
atoms.set_cell(cell1 * (v0 / v1)**(1 / 3), scale_atoms=True)
data = {'volumes': volumes,
'energies': energies,
'fitted_energy': e0,
'fitted_volume': v0,
'bulk_modulus': B,
'eos_type': opts.eos_type}
return data
示例2: accept_move
# 需要导入模块: from ase.io.trajectory import PickleTrajectory [as 别名]
# 或者: from ase.io.trajectory.PickleTrajectory import write [as 别名]
def accept_move(self):
e = self.atoms.get_potential_energy()
self.lists['energy'].append(e)
self.lists['counts'].append(1)
self.lists['coordinations'].append(self.sumcoordinations(self.surfmove.coordinations))
self.lists['types'].append(self.sumcoordinations(self.surfmove.types)) #See sumcoordinations
self.lists['vac_coordinations'].append(self.sumcoordinations(self.surfmove.vacant_coordinations))
self.lists['vac_types'].append(self.sumcoordinations(self.surfmove.vacant_types))
if self.mc_step>=self.total_steps/2:
if self.id_relax == None:
self.id_relax = self.n_accept
unrelax_energy, relax_energy = self.relax()
self.lists['unrelaxed_energies'].append(unrelax_energy)
self.lists['relaxed_energies'].append(relax_energy)
e += relax_energy - unrelax_energy
if e < self.ground_state_energy:
#now store .amc in tmpfn[1] and 0000* in tmpfn[0]
tmpfn = self.filename.split(".")
traj = PickleTrajectory(tmpfn[0]+".traj", 'w', self.atoms, master=True, backup=False)
traj.write()
traj.close()
#write(filename=tmpfn[0]+".traj",images=self.atoms)
self.ground_state_energy = e
else:
self.lists['unrelaxed_energies'].append(np.nan)
self.lists['relaxed_energies'].append(np.nan)
self.mc_step += 1
self.n_accept += 1
示例3: vasp2xyz
# 需要导入模块: from ase.io.trajectory import PickleTrajectory [as 别名]
# 或者: from ase.io.trajectory.PickleTrajectory import write [as 别名]
def vasp2xyz():
try:
from lxml import etree
except ImportError:
print "You need to install python-lxml."
print "start parse"
xml = etree.parse("vasprun.xml")
calculations = xml.xpath('//calculation')
print 'len(calculations)=', len(calculations)
from ase.io.trajectory import PickleTrajectory
atoms = io.read('POSCAR')
traj = PickleTrajectory('a.traj', 'w', atoms)
print "start find forces and positions"
allforce = []
allpos = []
def toarr(v):
x = v.text.split()
return map(float, x)
for i, u in enumerate(calculations):
print "step : ", i
forces = map(toarr, u.xpath('./varray[@name="forces"]/v'))
positions = map(toarr, u.xpath(
'./structure/varray[@name="positions"]/v'))
atoms.set_scaled_positions(positions)
allforce.append(forces)
allpos.append(positions)
traj.write()
np.save('allforce.npy', allforce)
np.save('allpos.npy', allpos)
passthru("ase-gui a.traj -o a.xyz ")
示例4: breed
# 需要导入模块: from ase.io.trajectory import PickleTrajectory [as 别名]
# 或者: from ase.io.trajectory.PickleTrajectory import write [as 别名]
def breed(particles,objects,gen):
sortedIndices = numpy.argsort(numpy.asarray(objects))
particlestobreed = []
explambda = numpy.log(10) / (NPsPerGen - 1)
for i in range(len(particles)):
trialvar = numpy.random.random()
if (trialvar <= numpy.exp(-1 * explambda * i)):
particlestobreed.append(particles[sortedIndices[i]])
NewGen = []
for i in range(NPsPerGen):
first = numpy.random.randint(len(particlestobreed))
second = numpy.random.randint(len(particlestobreed))
gene1 = numpy.random.randint(2)
gene2 = numpy.random.randint(2)
if (gene1 == 0):
type1 = particlestobreed[first].gene[0]
else:
type1 = particlestobreed[second].gene[0]
if (gene2 == 0):
type2 = particlestobreed[first].gene[1]
else:
type2 = particlestobreed[second].gene[1]
if (particlestobreed[first].gene[2] < particlestobreed[second].gene[2]):
minval = particlestobreed[first].gene[2]
maxval = particlestobreed[second].gene[2]
else:
minval = particlestobreed[second].gene[2]
maxval = particlestobreed[first].gene[2]
numbertype1 = numpy.random.randint(minval, maxval + 1)
NewGen.append(createparticle(type1,type2,numbertype1))
traj = PickleTrajectory('generation'+str(gen)+ '_' + str(i) + '.traj','w')
NewGen[i].gene = (type1,type2,numbertype1)
traj.write(ParticleList[i])
traj.close()
return NewGen
示例5: fit_volume
# 需要导入模块: from ase.io.trajectory import PickleTrajectory [as 别名]
# 或者: from ase.io.trajectory.PickleTrajectory import write [as 别名]
def fit_volume(self, name, atoms, data=None):
N, x = self.fit
cell0 = atoms.get_cell()
v = atoms.get_volume()
if x > 0:
strains = np.linspace(1 - x, 1 + x, N)
else:
strains = np.linspace(1 + x / v, 1 - x / v, N)**(1./3)
energies = []
traj = PickleTrajectory(self.get_filename(name, 'fit.traj'), 'w')
for s in strains:
atoms.set_cell(cell0 * s, scale_atoms=True)
energies.append(atoms.get_potential_energy())
traj.write(atoms)
traj.close()
if data is not None:
data['strains'] = strains
data['energies'] = energies
else:
assert N % 2 == 1
data = {'energy': energies[N // 2],
'strains': strains,
'energies': energies}
return data
示例6: _test_timestepping
# 需要导入模块: from ase.io.trajectory import PickleTrajectory [as 别名]
# 或者: from ase.io.trajectory.PickleTrajectory import write [as 别名]
def _test_timestepping(self, t):
#XXX DEBUG START
if debug and os.path.isfile('%s_%d.gpw' % (self.tdname, t)):
return
#XXX DEBUG END
timestep = self.timesteps[t]
self.assertAlmostEqual(self.duration % timestep, 0.0, 12)
niter = int(self.duration / timestep)
ndiv = 1 #XXX
traj = PickleTrajectory('%s_%d.traj' % (self.tdname, t),
'w', self.tdcalc.get_atoms())
t0 = time.time()
f = paropen('%s_%d.log' % (self.tdname, t), 'w')
print >>f, 'propagator: %s, duration: %6.1f as, timestep: %5.2f as, ' \
'niter: %d' % (self.propagator, self.duration, timestep, niter)
for i in range(1, niter+1):
# XXX bare bones propagation without all the nonsense
self.tdcalc.propagator.propagate(self.tdcalc.time,
timestep * attosec_to_autime)
self.tdcalc.time += timestep * attosec_to_autime
self.tdcalc.niter += 1
if i % ndiv == 0:
rate = 60 * ndiv / (time.time()-t0)
ekin = self.tdcalc.atoms.get_kinetic_energy()
epot = self.tdcalc.get_td_energy() * Hartree
F_av = np.zeros((len(self.tdcalc.atoms), 3))
print >>f, 'i=%06d, time=%6.1f as, rate=%6.2f min^-1, ' \
'ekin=%13.9f eV, epot=%13.9f eV, etot=%13.9f eV' \
% (i, timestep * i, rate, ekin, epot, ekin + epot)
t0 = time.time()
# Hack to prevent calls to GPAW::get_potential_energy when saving
spa = self.tdcalc.get_atoms()
spc = SinglePointCalculator(epot, F_av, None, None, spa)
spa.set_calculator(spc)
traj.write(spa)
f.close()
traj.close()
self.tdcalc.write('%s_%d.gpw' % (self.tdname, t), mode='all')
# Save density and wavefunctions to binary
gd, finegd = self.tdcalc.wfs.gd, self.tdcalc.density.finegd
if world.rank == 0:
big_nt_g = finegd.collect(self.tdcalc.density.nt_g)
np.save('%s_%d_nt.npy' % (self.tdname, t), big_nt_g)
del big_nt_g
big_psit_nG = gd.collect(self.tdcalc.wfs.kpt_u[0].psit_nG)
np.save('%s_%d_psit.npy' % (self.tdname, t), big_psit_nG)
del big_psit_nG
else:
finegd.collect(self.tdcalc.density.nt_g)
gd.collect(self.tdcalc.wfs.kpt_u[0].psit_nG)
world.barrier()
示例7: do_calculations
# 需要导入模块: from ase.io.trajectory import PickleTrajectory [as 别名]
# 或者: from ase.io.trajectory.PickleTrajectory import write [as 别名]
def do_calculations(self, formulas):
"""Perform calculation on molecules, write results to .gpw files."""
atoms = {}
for formula in formulas:
for symbol in string2symbols(formula.split('_')[0]):
atoms[symbol] = None
formulas = formulas + atoms.keys()
for formula in formulas:
if path.isfile(formula + '.gpw'):
continue
barrier()
open(formula + '.gpw', 'w')
s = molecule(formula)
s.center(vacuum=self.vacuum)
cell = s.get_cell()
h = self.h
s.set_cell((cell / (4 * h)).round() * 4 * h)
s.center()
calc = GPAW(h=h,
xc=self.xc,
eigensolver=self.eigensolver,
setups=self.setups,
basis=self.basis,
fixmom=True,
txt=formula + '.txt')
if len(s) == 1:
calc.set(hund=True)
s.set_calculator(calc)
if formula == 'BeH':
calc.initialize(s)
calc.nuclei[0].f_si = [(1, 0, 0.5, 0, 0),
(0.5, 0, 0, 0, 0)]
if formula in ['NO', 'ClO', 'CH']:
s.positions[:, 1] += h * 1.5
try:
energy = s.get_potential_energy()
except (RuntimeError, ConvergenceError):
if rank == 0:
print >> sys.stderr, 'Error in', formula
traceback.print_exc(file=sys.stderr)
else:
print >> self.txt, formula, repr(energy)
self.txt.flush()
calc.write(formula)
if formula in diatomic and self.calculate_dimer_bond_lengths:
traj = PickleTrajectory(formula + '.traj', 'w')
d = diatomic[formula][1]
for x in range(-2, 3):
s.set_distance(0, 1, d * (1.0 + x * 0.02))
traj.write(s)
示例8: mainBasinLoop
# 需要导入模块: from ase.io.trajectory import PickleTrajectory [as 别名]
# 或者: from ase.io.trajectory.PickleTrajectory import write [as 别名]
def mainBasinLoop(symbol1, symbol2, elementN1, elementN2, numberOfType1, numberOfType2, radius, percentType1):
"""symbol1 and symbol2 should be STRINGS.
elementN1 and elementN2 should be ATOMIC NUMBERS of those elements.
numberOfType1 and numberOfType2 are the actual # of those atoms in the molecule
radius can be a decimal
percent should be expressed as a number between 0 and 1.
After that, it will create five new sets of 400 molecules,
each set being the result of that first set having one of our small perturbations
performed on it, which are also then minimized, perturbed, etc., until 50,000
total original orientations have been minimized."""
bigKickResults, round1PE = [], []
global finalList
creationString = symbol1 + str(numberOfType1) + symbol2 + str(numberOfType2)
creationString2 = creationString + '.traj'
baseAtom = nearlySphericalAtom(str(creationString),radius,numberOfType1+numberOfType2)
baseAtom.set_pbc((1,1,1))
baseAtom.set_cell((100,100,100))
calc = QSC()
baseAtom.set_calculator(calc)
baseAtom = makeBimetallic(baseAtom,numberOfType1+numberOfType2,elementN1,elementN2,percentType1)
baseAtom = preventExplosions(baseAtom)
baseAtom = preventExplosions(baseAtom)
for x in range(listLength):
bigKickResults.append(baseAtom.copy())
for x in range(listLength/2):
bigKickResults[x] = shake(bigKickResults[x])
for x in range(listLength/2, listLength):
bigKickResults[x] = switchAtoms(bigKickResults[x])
for x in range(len(bigKickResults)):
bigKickResults[x] = optimizeMolecule(bigKickResults[x],FIREMoves,creationString2)
round1PE.append(bigKickResults[x].get_potential_energy())
minimumPE = min(round1PE)
minimumIndex = round1PE.index(minimumPE)
bestAtom = bigKickResults[minimumIndex]
minimaList = PickleTrajectory(str(creationString2),mode='a')
minimaList.write(bestAtom)
minimaList.close()
finalList.append(bestAtom.copy())
smallKicks(bigKickResults,0,creationString2)
veryBestAtom = returnFinalBestAtom(str(creationString2), str(creationString))
return veryBestAtom
示例9: write_optimized
# 需要导入模块: from ase.io.trajectory import PickleTrajectory [as 别名]
# 或者: from ase.io.trajectory.PickleTrajectory import write [as 别名]
def write_optimized(self, atoms, energy):
magmoms = None # XXX we could do better ...
forces = np.zeros((len(atoms), 3))
calc = SinglePointCalculator(energy, forces, np.zeros((3, 3)),
magmoms, atoms)
atoms.set_calculator(calc)
filename = '%s%s-optimized.traj' % (self.name, self.tag)
traj = PickleTrajectory(filename, 'w', backup=False)
traj.write(atoms)
traj.close()
示例10: write_mode
# 需要导入模块: from ase.io.trajectory import PickleTrajectory [as 别名]
# 或者: from ase.io.trajectory.PickleTrajectory import write [as 别名]
def write_mode(self, n, kT=units.kB * 300, nimages=30):
"""Write mode to trajectory file."""
mode = self.get_mode(n) * sqrt(kT / self.hnu[n])
p = self.atoms.positions.copy()
n %= 3 * len(self.indices)
traj = PickleTrajectory('%s.%d.traj' % (self.name, n), 'w')
calc = self.atoms.get_calculator()
self.atoms.set_calculator()
for x in np.linspace(0, 2 * pi, nimages, endpoint=False):
self.atoms.set_positions(p + sin(x) * mode)
traj.write(self.atoms)
self.atoms.set_positions(p)
self.atoms.set_calculator(calc)
traj.close()
示例11: fit_bond_length
# 需要导入模块: from ase.io.trajectory import PickleTrajectory [as 别名]
# 或者: from ase.io.trajectory.PickleTrajectory import write [as 别名]
def fit_bond_length(self, name, atoms, data):
N, x = self.fit
assert N % 2 == 1
d0 = atoms.get_distance(0, 1)
distances = np.linspace(d0 * (1 - x), d0 * (1 + x), N)
energies = []
traj = PickleTrajectory(self.get_filename(name, 'fit.traj'), 'w')
for d in distances:
atoms.set_distance(0, 1, d)
energies.append(atoms.get_potential_energy())
self.check_occupation_numbers(atoms)
traj.write(atoms)
traj.close()
data['distances'] = distances
data['energies'] = energies
示例12: optimizeMolecule
# 需要导入模块: from ase.io.trajectory import PickleTrajectory [as 别名]
# 或者: from ase.io.trajectory.PickleTrajectory import write [as 别名]
def optimizeMolecule(molecule,NMoves,creationString):
bestEnergy = 0.
totalMinimaFound = 0
sinceLastFind = 0
calc = QSC()
molecule.set_calculator(calc)
for i in range(NMoves):
molecule = newMove(molecule)
molecule = preventExplosions(molecule)
molecule.center()
sinceLastFind += 1
# do a last optimization of the structure
dyn = FIRE(molecule)
dyn.run(steps = 2000)
newEnergy = molecule.get_potential_energy()
if (newEnergy < bestEnergy):
optimizedMolecule = molecule
bestEnergy = newEnergy
line = str(totalMinimaFound) + " " + str(molecule.get_potential_energy()) + " " + str(i) +"\n"
print line
f = open('EnergyList.txt','a')
f.write(line)
f.close()
minimaList = PickleTrajectory(str(creationString),mode='a')
minimaList.write(optimizedMolecule)
totalMinimaFound += 1
minimaList.close()
sinceLastFind = 0
elif (sinceLastFind < 200):
break
minimaList.close()
minimaList = PickleTrajectory(str(creationString),mode='r')
atomslist = [atom for atom in minimaList]
ase.io.write('movie.xyz',atomslist,format='xyz') # write a movie file of our dynamics
minimaList.close()
return optimizedMolecule
示例13: fit_volume
# 需要导入模块: from ase.io.trajectory import PickleTrajectory [as 别名]
# 或者: from ase.io.trajectory.PickleTrajectory import write [as 别名]
def fit_volume(self, name, atoms):
N, x = self.fit
cell0 = atoms.get_cell()
strains = np.linspace(1 - x, 1 + x, N)
energies = []
traj = PickleTrajectory(self.get_filename(name, 'fit.traj'), 'w')
for s in strains:
atoms.set_cell(cell0 * s, scale_atoms=True)
energies.append(atoms.get_potential_energy())
traj.write(atoms)
traj.close()
assert N % 2 == 1
data = {'energy': energies[N // 2],
'strains': strains,
'energies': energies}
return data
示例14: calculate
# 需要导入模块: from ase.io.trajectory import PickleTrajectory [as 别名]
# 或者: from ase.io.trajectory.PickleTrajectory import write [as 别名]
def calculate(self, filename):
"""Run calculation and write results to file."""
self.log('Calculating', self.name, '...')
config = self.atoms.copy()
self.set_calculator(config, filename)
traj = PickleTrajectory(filename, 'w', backup=False)
cell = config.get_cell()
self.energies = []
if self.fmax is not None:
if (not config.constraints and
not config.positions.any(axis=1).all()):
# one atom is at (0,0,0) - fix it:
mask = np.logical_not(config.positions.any(axis=1))
config.constraints = FixAtoms(mask=mask)
dyn = LBFGS(config)
dyn.attach(traj, 1, config)
dyn.run(fmax=self.fmax)
e = config.get_potential_energy()
self.post_process(config)
self.energies.append(e)
elif not config.pbc.any() and len(config) == 2:
# This is a dimer.
self.bondlengths = []
d0 = config.get_distance(0, 1)
for strain in self.strains:
d = d0 * strain
config.set_distance(0, 1, d)
self.bondlengths.append(d)
e = config.get_potential_energy()
self.energies.append(e)
self.post_process(config)
traj.write(config)
else:
self.volumes = []
for strain in self.strains:
config.set_cell(strain * cell, scale_atoms=True)
self.volumes.append(config.get_volume())
e = config.get_potential_energy()
self.energies.append(e)
self.post_process(config)
traj.write(config)
return config
示例15: get_corrugation_energy
# 需要导入模块: from ase.io.trajectory import PickleTrajectory [as 别名]
# 或者: from ase.io.trajectory.PickleTrajectory import write [as 别名]
def get_corrugation_energy(atoms, constraints, bond, bottom, top, indent, m):
if 'zz' in indent:
xset = np.linspace(0., np.sqrt(3)*bond, m)
elif 'arm' in indent:
xset = np.linspace(0., 3*bond, m)
atoms_init = atoms.copy()
natoms = 0
for i in range(len(top)):
if top[i]:
natoms += 1
fix_l = FixedLine(i, [0., 0., 1.])
constraints.append(fix_l)
atoms.set_constraint(constraints)
def get_epot(x):
new_pos = atoms_init.positions.copy()
for iat in range(len(atoms)):
if top[iat]:
new_pos[iat][0] += x
atoms.positions = new_pos
e, hmin = get_optimal_h(atoms, bottom, top, natoms, False)
#print x, e
return e, hmin
# Start to move the top layer in x direction
corr_pot = np.zeros((len(xset), 3))
traj = PickleTrajectory(path + \
'trajectories/corrugation_trajectory_%s.traj' %(indent), "w", atoms)
for i, x in enumerate(xset):
traj.write(get_save_atoms(atoms))
e, hmin = get_epot(x)
corr_pot[i] = [x, hmin, e]
np.savetxt(path + 'datas/corrugation_data_%s.data' %(indent), corr_pot)
return corr_pot