本文整理汇总了Python中ase.io.trajectory.PickleTrajectory类的典型用法代码示例。如果您正苦于以下问题:Python PickleTrajectory类的具体用法?Python PickleTrajectory怎么用?Python PickleTrajectory使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了PickleTrajectory类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: accept_move
def accept_move(self):
e = self.atoms.get_potential_energy()
self.lists['energy'].append(e)
self.lists['counts'].append(1)
self.lists['coordinations'].append(self.sumcoordinations(self.surfmove.coordinations))
self.lists['types'].append(self.sumcoordinations(self.surfmove.types)) #See sumcoordinations
self.lists['vac_coordinations'].append(self.sumcoordinations(self.surfmove.vacant_coordinations))
self.lists['vac_types'].append(self.sumcoordinations(self.surfmove.vacant_types))
if self.mc_step>=self.total_steps/2:
if self.id_relax == None:
self.id_relax = self.n_accept
unrelax_energy, relax_energy = self.relax()
self.lists['unrelaxed_energies'].append(unrelax_energy)
self.lists['relaxed_energies'].append(relax_energy)
e += relax_energy - unrelax_energy
if e < self.ground_state_energy:
#now store .amc in tmpfn[1] and 0000* in tmpfn[0]
tmpfn = self.filename.split(".")
traj = PickleTrajectory(tmpfn[0]+".traj", 'w', self.atoms, master=True, backup=False)
traj.write()
traj.close()
#write(filename=tmpfn[0]+".traj",images=self.atoms)
self.ground_state_energy = e
else:
self.lists['unrelaxed_energies'].append(np.nan)
self.lists['relaxed_energies'].append(np.nan)
self.mc_step += 1
self.n_accept += 1
示例2: __init__
def __init__(self, filename, mode='r', atoms=None, master=None,
backup=True):
if master is not None:
if atoms.get_comm().rank != 0:
raise NotImplementedError("It is required that the cpu with rank 0 is the master")
_PickleTrajectory.__init__(self, filename, mode, atoms, master,
backup=backup)
示例3: eos
def eos(self, atoms, name):
opts = self.opts
traj = PickleTrajectory(self.get_filename(name, 'traj'), 'w', atoms)
eps = 0.01
strains = np.linspace(1 - eps, 1 + eps, 5)
v1 = atoms.get_volume()
volumes = strains**3 * v1
energies = []
cell1 = atoms.cell
for s in strains:
atoms.set_cell(cell1 * s, scale_atoms=True)
energies.append(atoms.get_potential_energy())
traj.write(atoms)
traj.close()
eos = EquationOfState(volumes, energies, opts.eos_type)
v0, e0, B = eos.fit()
atoms.set_cell(cell1 * (v0 / v1)**(1 / 3), scale_atoms=True)
data = {'volumes': volumes,
'energies': energies,
'fitted_energy': e0,
'fitted_volume': v0,
'bulk_modulus': B,
'eos_type': opts.eos_type}
return data
示例4: vasp2xyz
def vasp2xyz():
try:
from lxml import etree
except ImportError:
print "You need to install python-lxml."
print "start parse"
xml = etree.parse("vasprun.xml")
calculations = xml.xpath('//calculation')
print 'len(calculations)=', len(calculations)
from ase.io.trajectory import PickleTrajectory
atoms = io.read('POSCAR')
traj = PickleTrajectory('a.traj', 'w', atoms)
print "start find forces and positions"
allforce = []
allpos = []
def toarr(v):
x = v.text.split()
return map(float, x)
for i, u in enumerate(calculations):
print "step : ", i
forces = map(toarr, u.xpath('./varray[@name="forces"]/v'))
positions = map(toarr, u.xpath(
'./structure/varray[@name="positions"]/v'))
atoms.set_scaled_positions(positions)
allforce.append(forces)
allpos.append(positions)
traj.write()
np.save('allforce.npy', allforce)
np.save('allpos.npy', allpos)
passthru("ase-gui a.traj -o a.xyz ")
示例5: breed
def breed(particles,objects,gen):
sortedIndices = numpy.argsort(numpy.asarray(objects))
particlestobreed = []
explambda = numpy.log(10) / (NPsPerGen - 1)
for i in range(len(particles)):
trialvar = numpy.random.random()
if (trialvar <= numpy.exp(-1 * explambda * i)):
particlestobreed.append(particles[sortedIndices[i]])
NewGen = []
for i in range(NPsPerGen):
first = numpy.random.randint(len(particlestobreed))
second = numpy.random.randint(len(particlestobreed))
gene1 = numpy.random.randint(2)
gene2 = numpy.random.randint(2)
if (gene1 == 0):
type1 = particlestobreed[first].gene[0]
else:
type1 = particlestobreed[second].gene[0]
if (gene2 == 0):
type2 = particlestobreed[first].gene[1]
else:
type2 = particlestobreed[second].gene[1]
if (particlestobreed[first].gene[2] < particlestobreed[second].gene[2]):
minval = particlestobreed[first].gene[2]
maxval = particlestobreed[second].gene[2]
else:
minval = particlestobreed[second].gene[2]
maxval = particlestobreed[first].gene[2]
numbertype1 = numpy.random.randint(minval, maxval + 1)
NewGen.append(createparticle(type1,type2,numbertype1))
traj = PickleTrajectory('generation'+str(gen)+ '_' + str(i) + '.traj','w')
NewGen[i].gene = (type1,type2,numbertype1)
traj.write(ParticleList[i])
traj.close()
return NewGen
示例6: fit_volume
def fit_volume(self, name, atoms, data=None):
N, x = self.fit
cell0 = atoms.get_cell()
v = atoms.get_volume()
if x > 0:
strains = np.linspace(1 - x, 1 + x, N)
else:
strains = np.linspace(1 + x / v, 1 - x / v, N)**(1./3)
energies = []
traj = PickleTrajectory(self.get_filename(name, 'fit.traj'), 'w')
for s in strains:
atoms.set_cell(cell0 * s, scale_atoms=True)
energies.append(atoms.get_potential_energy())
traj.write(atoms)
traj.close()
if data is not None:
data['strains'] = strains
data['energies'] = energies
else:
assert N % 2 == 1
data = {'energy': energies[N // 2],
'strains': strains,
'energies': energies}
return data
示例7: _test_timestepping
def _test_timestepping(self, t):
#XXX DEBUG START
if debug and os.path.isfile('%s_%d.gpw' % (self.tdname, t)):
return
#XXX DEBUG END
timestep = self.timesteps[t]
self.assertAlmostEqual(self.duration % timestep, 0.0, 12)
niter = int(self.duration / timestep)
ndiv = 1 #XXX
traj = PickleTrajectory('%s_%d.traj' % (self.tdname, t),
'w', self.tdcalc.get_atoms())
t0 = time.time()
f = paropen('%s_%d.log' % (self.tdname, t), 'w')
print >>f, 'propagator: %s, duration: %6.1f as, timestep: %5.2f as, ' \
'niter: %d' % (self.propagator, self.duration, timestep, niter)
for i in range(1, niter+1):
# XXX bare bones propagation without all the nonsense
self.tdcalc.propagator.propagate(self.tdcalc.time,
timestep * attosec_to_autime)
self.tdcalc.time += timestep * attosec_to_autime
self.tdcalc.niter += 1
if i % ndiv == 0:
rate = 60 * ndiv / (time.time()-t0)
ekin = self.tdcalc.atoms.get_kinetic_energy()
epot = self.tdcalc.get_td_energy() * Hartree
F_av = np.zeros((len(self.tdcalc.atoms), 3))
print >>f, 'i=%06d, time=%6.1f as, rate=%6.2f min^-1, ' \
'ekin=%13.9f eV, epot=%13.9f eV, etot=%13.9f eV' \
% (i, timestep * i, rate, ekin, epot, ekin + epot)
t0 = time.time()
# Hack to prevent calls to GPAW::get_potential_energy when saving
spa = self.tdcalc.get_atoms()
spc = SinglePointCalculator(epot, F_av, None, None, spa)
spa.set_calculator(spc)
traj.write(spa)
f.close()
traj.close()
self.tdcalc.write('%s_%d.gpw' % (self.tdname, t), mode='all')
# Save density and wavefunctions to binary
gd, finegd = self.tdcalc.wfs.gd, self.tdcalc.density.finegd
if world.rank == 0:
big_nt_g = finegd.collect(self.tdcalc.density.nt_g)
np.save('%s_%d_nt.npy' % (self.tdname, t), big_nt_g)
del big_nt_g
big_psit_nG = gd.collect(self.tdcalc.wfs.kpt_u[0].psit_nG)
np.save('%s_%d_psit.npy' % (self.tdname, t), big_psit_nG)
del big_psit_nG
else:
finegd.collect(self.tdcalc.density.nt_g)
gd.collect(self.tdcalc.wfs.kpt_u[0].psit_nG)
world.barrier()
示例8: do_calculations
def do_calculations(self, formulas):
"""Perform calculation on molecules, write results to .gpw files."""
atoms = {}
for formula in formulas:
for symbol in string2symbols(formula.split('_')[0]):
atoms[symbol] = None
formulas = formulas + atoms.keys()
for formula in formulas:
if path.isfile(formula + '.gpw'):
continue
barrier()
open(formula + '.gpw', 'w')
s = molecule(formula)
s.center(vacuum=self.vacuum)
cell = s.get_cell()
h = self.h
s.set_cell((cell / (4 * h)).round() * 4 * h)
s.center()
calc = GPAW(h=h,
xc=self.xc,
eigensolver=self.eigensolver,
setups=self.setups,
basis=self.basis,
fixmom=True,
txt=formula + '.txt')
if len(s) == 1:
calc.set(hund=True)
s.set_calculator(calc)
if formula == 'BeH':
calc.initialize(s)
calc.nuclei[0].f_si = [(1, 0, 0.5, 0, 0),
(0.5, 0, 0, 0, 0)]
if formula in ['NO', 'ClO', 'CH']:
s.positions[:, 1] += h * 1.5
try:
energy = s.get_potential_energy()
except (RuntimeError, ConvergenceError):
if rank == 0:
print >> sys.stderr, 'Error in', formula
traceback.print_exc(file=sys.stderr)
else:
print >> self.txt, formula, repr(energy)
self.txt.flush()
calc.write(formula)
if formula in diatomic and self.calculate_dimer_bond_lengths:
traj = PickleTrajectory(formula + '.traj', 'w')
d = diatomic[formula][1]
for x in range(-2, 3):
s.set_distance(0, 1, d * (1.0 + x * 0.02))
traj.write(s)
示例9: mainBasinLoop
def mainBasinLoop(symbol1, symbol2, elementN1, elementN2, numberOfType1, numberOfType2, radius, percentType1):
"""symbol1 and symbol2 should be STRINGS.
elementN1 and elementN2 should be ATOMIC NUMBERS of those elements.
numberOfType1 and numberOfType2 are the actual # of those atoms in the molecule
radius can be a decimal
percent should be expressed as a number between 0 and 1.
After that, it will create five new sets of 400 molecules,
each set being the result of that first set having one of our small perturbations
performed on it, which are also then minimized, perturbed, etc., until 50,000
total original orientations have been minimized."""
bigKickResults, round1PE = [], []
global finalList
creationString = symbol1 + str(numberOfType1) + symbol2 + str(numberOfType2)
creationString2 = creationString + '.traj'
baseAtom = nearlySphericalAtom(str(creationString),radius,numberOfType1+numberOfType2)
baseAtom.set_pbc((1,1,1))
baseAtom.set_cell((100,100,100))
calc = QSC()
baseAtom.set_calculator(calc)
baseAtom = makeBimetallic(baseAtom,numberOfType1+numberOfType2,elementN1,elementN2,percentType1)
baseAtom = preventExplosions(baseAtom)
baseAtom = preventExplosions(baseAtom)
for x in range(listLength):
bigKickResults.append(baseAtom.copy())
for x in range(listLength/2):
bigKickResults[x] = shake(bigKickResults[x])
for x in range(listLength/2, listLength):
bigKickResults[x] = switchAtoms(bigKickResults[x])
for x in range(len(bigKickResults)):
bigKickResults[x] = optimizeMolecule(bigKickResults[x],FIREMoves,creationString2)
round1PE.append(bigKickResults[x].get_potential_energy())
minimumPE = min(round1PE)
minimumIndex = round1PE.index(minimumPE)
bestAtom = bigKickResults[minimumIndex]
minimaList = PickleTrajectory(str(creationString2),mode='a')
minimaList.write(bestAtom)
minimaList.close()
finalList.append(bestAtom.copy())
smallKicks(bigKickResults,0,creationString2)
veryBestAtom = returnFinalBestAtom(str(creationString2), str(creationString))
return veryBestAtom
示例10: write_optimized
def write_optimized(self, atoms, energy):
magmoms = None # XXX we could do better ...
forces = np.zeros((len(atoms), 3))
calc = SinglePointCalculator(energy, forces, np.zeros((3, 3)),
magmoms, atoms)
atoms.set_calculator(calc)
filename = '%s%s-optimized.traj' % (self.name, self.tag)
traj = PickleTrajectory(filename, 'w', backup=False)
traj.write(atoms)
traj.close()
示例11: write_mode
def write_mode(self, n, kT=units.kB * 300, nimages=30):
"""Write mode to trajectory file."""
mode = self.get_mode(n) * sqrt(kT / self.hnu[n])
p = self.atoms.positions.copy()
n %= 3 * len(self.indices)
traj = PickleTrajectory('%s.%d.traj' % (self.name, n), 'w')
calc = self.atoms.get_calculator()
self.atoms.set_calculator()
for x in np.linspace(0, 2 * pi, nimages, endpoint=False):
self.atoms.set_positions(p + sin(x) * mode)
traj.write(self.atoms)
self.atoms.set_positions(p)
self.atoms.set_calculator(calc)
traj.close()
示例12: __init__
def __init__(self, atoms,
temperature=100 * kB,
optimizer=FIRE,
fmax=0.1,
dr=0.1,
logfile='-',
trajectory='lowest.traj',
optimizer_logfile='-',
local_minima_trajectory='local_minima.traj',
adjust_cm=True):
Dynamics.__init__(self, atoms, logfile, trajectory)
self.kT = temperature
self.optimizer = optimizer
self.fmax = fmax
self.dr = dr
if adjust_cm:
self.cm = atoms.get_center_of_mass()
else:
self.cm = None
self.optimizer_logfile = optimizer_logfile
self.lm_trajectory = local_minima_trajectory
if isinstance(local_minima_trajectory, str):
self.lm_trajectory = PickleTrajectory(local_minima_trajectory,
'w', atoms)
self.initialize()
示例13: fit_bond_length
def fit_bond_length(self, name, atoms, data):
N, x = self.fit
assert N % 2 == 1
d0 = atoms.get_distance(0, 1)
distances = np.linspace(d0 * (1 - x), d0 * (1 + x), N)
energies = []
traj = PickleTrajectory(self.get_filename(name, 'fit.traj'), 'w')
for d in distances:
atoms.set_distance(0, 1, d)
energies.append(atoms.get_potential_energy())
self.check_occupation_numbers(atoms)
traj.write(atoms)
traj.close()
data['distances'] = distances
data['energies'] = energies
示例14: optimizeMolecule
def optimizeMolecule(molecule,NMoves,creationString):
bestEnergy = 0.
totalMinimaFound = 0
sinceLastFind = 0
calc = QSC()
molecule.set_calculator(calc)
for i in range(NMoves):
molecule = newMove(molecule)
molecule = preventExplosions(molecule)
molecule.center()
sinceLastFind += 1
# do a last optimization of the structure
dyn = FIRE(molecule)
dyn.run(steps = 2000)
newEnergy = molecule.get_potential_energy()
if (newEnergy < bestEnergy):
optimizedMolecule = molecule
bestEnergy = newEnergy
line = str(totalMinimaFound) + " " + str(molecule.get_potential_energy()) + " " + str(i) +"\n"
print line
f = open('EnergyList.txt','a')
f.write(line)
f.close()
minimaList = PickleTrajectory(str(creationString),mode='a')
minimaList.write(optimizedMolecule)
totalMinimaFound += 1
minimaList.close()
sinceLastFind = 0
elif (sinceLastFind < 200):
break
minimaList.close()
minimaList = PickleTrajectory(str(creationString),mode='r')
atomslist = [atom for atom in minimaList]
ase.io.write('movie.xyz',atomslist,format='xyz') # write a movie file of our dynamics
minimaList.close()
return optimizedMolecule
示例15: MD
def MD(self):
"""Molecular Dynamic"""
from ase.md.velocitydistribution import MaxwellBoltzmannDistribution
from ase import units
from ase.md import MDLogger
from ase.io.trajectory import PickleTrajectory
from ase.md.langevin import Langevin
from ase.md.verlet import VelocityVerlet
dyndrivers = {
'Langevin': Langevin,
'None': VelocityVerlet,
}
useAsap = False
mol = self.mol
temperature = self.definedParams['temperature']
init_temperature = self.definedParams['init_temperature']
time_step = self.definedParams['time_step']
nstep = self.definedParams['nstep']
nprint = self.definedParams['nprint']
thermostat = self.definedParams['thermostat']
prop_file = os.path.join(self.definedParams['workdir'],
self.definedParams['output_prefix']+'.out')
traj_file = os.path.join(self.definedParams['workdir'],
self.definedParams['output_prefix']+'.traj')
MaxwellBoltzmannDistribution(mol,init_temperature*units.kB)
if thermostat == 'None':
dyn = VelocityVerlet(mol, time_step*units.fs)
elif thermostat == 'Langevin':
dyn = Langevin(mol, time_step*units.fs, temperature*units.kB, 0.01 )
else:
raise ImplementationError(method,'Thermostat is not implemented in the MD function')
#Function to print the potential, kinetic and total energy
traj = PickleTrajectory(traj_file,"a",mol)
dyn.attach(MDLogger(dyn,mol,prop_file),interval=nprint)
dyn.attach(traj.write, interval = nprint)
dyn.run(nstep)
traj.close()