本文整理汇总了Python中aplpy.FITSFigure.show_colorscale方法的典型用法代码示例。如果您正苦于以下问题:Python FITSFigure.show_colorscale方法的具体用法?Python FITSFigure.show_colorscale怎么用?Python FITSFigure.show_colorscale使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类aplpy.FITSFigure
的用法示例。
在下文中一共展示了FITSFigure.show_colorscale方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: GPSFermiPlot
# 需要导入模块: from aplpy import FITSFigure [as 别名]
# 或者: from aplpy.FITSFigure import show_colorscale [as 别名]
class GPSFermiPlot(GalacticPlaneSurveyPanelPlot):
def main(self, figure, subplot):
filename = FermiGalacticCenter.filenames()['counts']
self.fits_figure = FITSFigure(filename, figure=figure, subplot=subplot)
self.fits_figure.show_colorscale(vmin=1, vmax=10)
self.fits_figure.ticks.set_xspacing(2)
示例2: part_8
# 需要导入模块: from aplpy import FITSFigure [as 别名]
# 或者: from aplpy.FITSFigure import show_colorscale [as 别名]
def part_8():
object_list = ['ROXs12','ROXs42B','ROXs42B']
filename_list = ['ROXs12','ROXs42Bb','ROXs42Bc']
for i in range(len(filename_list)):
outfile = open('position_'+filename_list[i]+'.dat','w')
outfile.write('# '+'%25s'%'file name\t'\
+'%12s'%'x planet\t'\
+'%12s'%'y planet\t'\
+'%12s'%'position angle\t'\
+'%12s'%'projected separation (pixels)\n')
if filename_list[i] == 'ROXs12': int_x,int_y = 562,685
elif filename_list[i] == 'ROXs42Bb': int_x,int_y = 629,495
elif filename_list[i] == 'ROXs42Bc': int_x,int_y = 546,465
parts = ['','_CMsub','_ADIsub','_bPSFsub']
for j in parts:
filename = object_list[i]+j+'_aligned_median.fits'
fit_radius = 16
f = fits.open(filename)
scidata = f[0].data
x_data = scidata[int_y,int_x-fit_radius:int_x+fit_radius+1]
x_data -= min(x_data)
fit_x = np.linspace(-fit_radius,fit_radius,1+2*fit_radius)
xfitParam, xfitCovar = curve_fit(gaussian_pdf,fit_x,x_data)
y_data = scidata[int_y-fit_radius:int_y+fit_radius+1,int_x]
y_data -= min(y_data)
fit_y = np.linspace(-fit_radius,fit_radius,1+2*fit_radius)
yfitParam, yfitCovar = curve_fit(gaussian_pdf,fit_y,y_data)
thisPARANG = f[0].header['PARANG']
thisROTPPOSN = f[0].header['ROTPPOSN']
thisEL = f[0].header['EL']
thisINSTANGL = f[0].header['INSTANGL']
PA_yaxis = thisPARANG +thisROTPPOSN -thisEL -thisINSTANGL
PA_planet = PA_yaxis -rad_to_deg(arctan2(float(xfitParam[0]+int_x-512),float(yfitParam[0]+int_y-512)))
if PA_planet < 0: PA_planet += 360
outfile.write('%25s'%str(object_list[i]+j+'_aligned_median.fits')+'\t'\
+'%8s'%'%.3f'%(float(xfitParam[0]+int_x))+'\t'\
+'%8s'%'%.3f'%(float(yfitParam[0]+int_y))+'\t'\
+'%8s'%'%.3f'%(float(PA_planet))+'\t'\
+'%8s'%'%.3f'%(float(sqrt((xfitParam[0]+int_x-512)**2+(yfitParam[0]+int_y-512)**2)))+'\n')
tf = FITSFigure(filename)
tf.show_colorscale(cmap='gray')
tf.add_colorbar()
tf.colorbar.show(location='top',box_orientation='horizontal')
plt.savefig(object_list[i]+j+'_aligned_median.pdf',dpi=200)
plt.close()
outfile.close()
示例3: FITSFigure
# 需要导入模块: from aplpy import FITSFigure [as 别名]
# 或者: from aplpy.FITSFigure import show_colorscale [as 别名]
method='lima'))
# Gammapy significance
significance = np.nan_to_num(significance(correlated_counts, correlated_model,
method='lima'))
titles = ['Gammapy Significance', 'Fermi Tools Significance']
# Plot
fig = plt.figure(figsize=(10, 5))
hdu1 = fits.ImageHDU(significance, header)
f1 = FITSFigure(hdu1, figure=fig, convention='wells', subplot=(1, 2, 1))
f1.set_tick_labels_font(size='x-small')
f1.tick_labels.set_xformat('ddd')
f1.tick_labels.set_yformat('ddd')
f1.show_colorscale(vmin=0, vmax=10, cmap='afmhot')
f1.add_colorbar(axis_label_text='Significance')
f1.colorbar.set_width(0.1)
f1.colorbar.set_location('right')
hdu2 = fits.ImageHDU(fermi_significance, header)
f2 = FITSFigure(hdu2, figure=fig, convention='wells', subplot=(1, 2, 2))
f2.set_tick_labels_font(size='x-small')
f2.tick_labels.set_xformat('ddd')
f2.hide_ytick_labels()
f2.hide_yaxis_label()
f2.show_colorscale(vmin=0, vmax=10, cmap='afmhot')
f2.add_colorbar(axis_label_text='Significance')
f2.colorbar.set_width(0.1)
f2.colorbar.set_location('right')
fig.text(0.15, 0.92, "Gammapy Significance")
示例4: FITSFigure
# 需要导入模块: from aplpy import FITSFigure [as 别名]
# 或者: from aplpy.FITSFigure import show_colorscale [as 别名]
# Fermi significance
fermi_significance = np.nan_to_num(significance(correlated_counts, correlated_gtmodel, method="lima"))
# Gammapy significance
significance = np.nan_to_num(significance(correlated_counts, correlated_model, method="lima"))
titles = ["Gammapy Significance", "Fermi Tools Significance"]
# Plot
fig = plt.figure(figsize=(10, 5))
hdu1 = fits.ImageHDU(significance, header)
f1 = FITSFigure(hdu1, figure=fig, convention="wells", subplot=(1, 2, 1))
f1.set_tick_labels_font(size="x-small")
f1.tick_labels.set_xformat("ddd")
f1.tick_labels.set_yformat("ddd")
f1.show_colorscale(vmin=0, vmax=20, cmap="afmhot", stretch="sqrt")
f1.add_colorbar(axis_label_text="Significance")
f1.colorbar.set_width(0.1)
f1.colorbar.set_location("right")
hdu2 = fits.ImageHDU(fermi_significance, header)
f2 = FITSFigure(hdu2, figure=fig, convention="wells", subplot=(1, 2, 2))
f2.set_tick_labels_font(size="x-small")
f2.tick_labels.set_xformat("ddd")
f2.hide_ytick_labels()
f2.hide_yaxis_label()
f2.show_colorscale(vmin=0, vmax=20, cmap="afmhot", stretch="sqrt")
f2.add_colorbar(axis_label_text="Significance")
f2.colorbar.set_width(0.1)
f2.colorbar.set_location("right")
fig.text(0.15, 0.92, "Gammapy Significance")
示例5: float
# 需要导入模块: from aplpy import FITSFigure [as 别名]
# 或者: from aplpy.FITSFigure import show_colorscale [as 别名]
#import IPython; IPython.embed(); 1/0
# Computing the sub-figure sizes is surprisingly hard
figsize=(5, 15)
figure = mpl.figure(figsize=figsize)
axis_ratio = figsize[0] / float(figsize[1])
edge_margin_x = 0.12
edge_margin_y = edge_margin_x * axis_ratio
edge_margin_x_up = 0.01
edge_margin_y_up = edge_margin_x_up * axis_ratio
inner_margin_x = 0.1
inner_margin_y = inner_margin_x * axis_ratio
size_x = (1 - edge_margin_x - edge_margin_x_up)
size_y = (1 - edge_margin_y - edge_margin_y_up - 2 * inner_margin_y) / 3
for ii, image in enumerate(images):
subplot = [edge_margin_x, edge_margin_y + ii * (size_y + inner_margin_y), size_x, size_y]
print('subplot = {0}'.format(subplot))
f = FITSFigure(image['filename'], figure=figure, subplot=subplot)
f.recenter(x_center, y_center, 0.95 * radius)
set_hgps_style(f)
f.show_colorscale(vmin=-1, vmax=8, stretch='power', exponent=1, cmap='jet') #vmid=-3, stretch='log', )
if ii == 1:
f.show_regions('sources.reg')
else:
f.show_regions('sources2.reg')
filename = 'icrc2013_89_06.pdf'
print('Writing {}'.format(filename))
figure.savefig(filename)
示例6: catalog_image
# 需要导入模块: from aplpy import FITSFigure [as 别名]
# 或者: from aplpy.FITSFigure import show_colorscale [as 别名]
"""Produces an image from 1FHL catalog point sources.
"""
import numpy as np
import matplotlib.pyplot as plt
from aplpy import FITSFigure
from gammapy.datasets import FermiGalacticCenter
from gammapy.image import catalog_image, SkyImage
from gammapy.irf import EnergyDependentTablePSF
# Create image of defined size
reference = SkyImage.empty(nxpix=300, nypix=100, binsz=1).to_image_hdu()
psf_file = FermiGalacticCenter.filenames()['psf']
psf = EnergyDependentTablePSF.read(psf_file)
# Create image
image = catalog_image(reference, psf, catalog='1FHL', source_type='point',
total_flux='True')
# Plot
fig = FITSFigure(image.to_fits()[0], figsize=(15, 5))
fig.show_colorscale(interpolation='bicubic', cmap='afmhot', stretch='log', vmin=1E-12, vmax=1E-8)
fig.tick_labels.set_xformat('ddd')
fig.tick_labels.set_yformat('dd')
ticks = np.logspace(-12, -8, 5)
fig.add_colorbar(ticks=ticks, axis_label_text='Flux (ph s^-1 cm^-2 TeV^-1)')
fig.colorbar._colorbar_axes.set_yticklabels(['{:.0e}'.format(_) for _ in ticks])
plt.tight_layout()
plt.show()
示例7: dict
# 需要导入模块: from aplpy import FITSFigure [as 别名]
# 或者: from aplpy.FITSFigure import show_colorscale [as 别名]
tsimage = dict(label='TSMap', filename=tsfile)
# Determine image center and width / height
dpi = 2000
header = fits.getheader(tsimage['filename'])
wcs = WCS(header)
header['NAXIS1'] / dpi
header['NAXIS2'] / dpi
lon, lat = header['NAXIS1'] / 2., header['NAXIS2'] / 2.
x_center, y_center = wcs.wcs_pix2world(lon, lat, 0)
radius = header['CDELT2'] * header['NAXIS2'] / 2.
# Computing the sub-figure sizes is surprisingly hard
figsize=(5, 5)
figure = mpl.figure(figsize=figsize)
f = FITSFigure(tsimage['filename'], figure=figure)
f.recenter(x_center, y_center, 0.95 * radius)
set_hgps_style(f)
f.show_colorscale(vmin=1e-5, vmax=vmax, stretch=st[0], exponent=1, cmap='jet') #vmid=-3, stretch='log', )
f.show_colorbar()
filename = config["out"]+'/TSMaps.eps'
print('Writing {}'.format(filename))
figure.savefig(filename)
filename = config["out"]+'/TSMaps.png'
print('Writing {}'.format(filename))
figure.savefig(filename)
示例8: prepare_images
# 需要导入模块: from aplpy import FITSFigure [as 别名]
# 或者: from aplpy.FITSFigure import show_colorscale [as 别名]
from astropy.io import fits
from npred_general import prepare_images
from aplpy import FITSFigure
model, gtmodel, ratio, counts, header = prepare_images()
# Plotting
fig = plt.figure()
hdu1 = fits.ImageHDU(model, header)
f1 = FITSFigure(hdu1, figure=fig, convention='wells', subplot=[0.18, 0.264, 0.18, 0.234])
f1.tick_labels.set_font(size='x-small')
f1.tick_labels.set_xformat('ddd')
f1.tick_labels.set_yformat('ddd')
f1.axis_labels.hide_x()
f1.show_colorscale(vmin=0, vmax=0.3)
hdu2 = fits.ImageHDU(gtmodel, header)
f2 = FITSFigure(hdu2, figure=fig, convention='wells', subplot=[0.38, 0.25, 0.2, 0.26])
f2.tick_labels.set_font(size='x-small')
f2.tick_labels.set_xformat('ddd')
f2.tick_labels.hide_y()
f2.axis_labels.hide_y()
f2.show_colorscale(vmin=0, vmax=0.3)
f2.add_colorbar()
f2.colorbar.set_width(0.1)
f2.colorbar.set_location('right')
hdu3 = fits.ImageHDU(ratio, header)
f3 = FITSFigure(hdu3, figure=fig, convention='wells', subplot=[0.67, 0.25, 0.2, 0.26])
f3.tick_labels.set_font(size='x-small')
示例9: float
# 需要导入模块: from aplpy import FITSFigure [as 别名]
# 或者: from aplpy.FITSFigure import show_colorscale [as 别名]
figure = mpl.figure(figsize=figsize)
axis_ratio = figsize[0] / float(figsize[1])
edge_margin_x = 0.12
edge_margin_y = edge_margin_x * axis_ratio
edge_margin_x_up = 0.01
edge_margin_y_up = edge_margin_x_up * axis_ratio
inner_margin_x = 0.1
inner_margin_y = inner_margin_x * axis_ratio
size_x = (1 - edge_margin_x - edge_margin_x_up)
size_y = (1 - edge_margin_y - edge_margin_y_up - 2 * inner_margin_y) / 3
for ii, image in enumerate(images):
subplot = [edge_margin_x, edge_margin_y + ii * (size_y + inner_margin_y), size_x, size_y]
f = FITSFigure(image['filename'], figure=figure, subplot=subplot)
f.recenter(x_center, y_center, 0.95 * radius)
set_hgps_style(f)
print image['filename']
try :
f.show_colorscale(vmin=-1, vmax=vmax, stretch='power', exponent=1, cmap='jet',smooth=3,kernel ='gauss') #vmid=-3, stretch='log', )
except:
f.show_colorscale(vmin=-1, vmax=vmax, stretch='power', exponent=1, cmap='jet') #vmid=-3, stretch='log', )
# TODO: overplot sources
# f.show_regions("sources.reg")
filename = config["out"]+'/Maps.eps'
print('Writing {}'.format(filename))
figure.savefig(filename)
filename = config["out"]+'/Maps.png'
print('Writing {}'.format(filename))
figure.savefig(filename)
示例10: prepare_images
# 需要导入模块: from aplpy import FITSFigure [as 别名]
# 或者: from aplpy.FITSFigure import show_colorscale [as 别名]
"""Runs commands to produce convolved predicted counts map in current directory.
"""
import matplotlib.pyplot as plt
from astropy.io import fits
from aplpy import FITSFigure
from npred_general import prepare_images
model, gtmodel, ratio, counts, header = prepare_images()
# Plotting
fig = plt.figure(figsize=(15, 5))
image1 = fits.ImageHDU(data=model, header=header)
f1 = FITSFigure(image1, figure=fig, subplot=(1, 3, 1), convention='wells')
f1.show_colorscale(vmin=0, vmax=0.3, cmap='afmhot')
f1.tick_labels.set_xformat('ddd')
f1.tick_labels.set_yformat('dd')
image2 = fits.ImageHDU(data=gtmodel, header=header)
f2 = FITSFigure(image2, figure=fig, subplot=(1, 3, 2), convention='wells')
f2.show_colorscale(vmin=0, vmax=0.3, cmap='afmhot')
f2.tick_labels.set_xformat('ddd')
f2.tick_labels.set_yformat('dd')
image3 = fits.ImageHDU(data=ratio, header=header)
f3 = FITSFigure(image3, figure=fig, subplot=(1, 3, 3), convention='wells')
f3.show_colorscale(vmin=0.95, vmax=1.05, cmap='RdBu')
f3.tick_labels.set_xformat('ddd')
f3.tick_labels.set_yformat('dd')
f3.add_colorbar(ticks=[0.95, 0.975, 1, 1.025, 1.05])
示例11: luminosity
# 需要导入模块: from aplpy import FITSFigure [as 别名]
# 或者: from aplpy.FITSFigure import show_colorscale [as 别名]
n_sources=n_sources, rad_dis=rad_dis, vel_dis=vel_dis, max_age=1e6, spiralarms=spiralarms, random_state=0
)
# Minimum source luminosity (ph s^-1)
luminosity_min = 4e34
# Maximum source luminosity (ph s^-1)
luminosity_max = 4e37
# Luminosity function differential power-law index
luminosity_index = 1.5
# Assigns luminosities to sources
luminosity = sample_powerlaw(luminosity_min, luminosity_max, luminosity_index, n_sources, random_state=0)
table["luminosity"] = luminosity
# Adds parameters to table: distance, glon, glat, flux, angular_extension
table = population.add_observed_parameters(table)
table.meta["Energy Bins"] = np.array([10, 500]) * u.GeV
# Create image
image = catalog_image(reference, psf, catalog="simulation", source_type="point", total_flux=True, sim_table=table)
# Plot
fig = FITSFigure(image.to_fits(format="fermi-background")[0], figsize=(15, 5))
fig.show_colorscale(interpolation="bicubic", cmap="afmhot", stretch="log", vmin=1e30, vmax=1e35)
fig.tick_labels.set_xformat("ddd")
fig.tick_labels.set_yformat("dd")
ticks = np.logspace(30, 35, 6)
fig.add_colorbar(ticks=ticks, axis_label_text="Flux (ph s^-1)")
fig.colorbar._colorbar_axes.set_yticklabels(["{:.0e}".format(_) for _ in ticks])
plt.tight_layout()
plt.show()
示例12: FITSFigure
# 需要导入模块: from aplpy import FITSFigure [as 别名]
# 或者: from aplpy.FITSFigure import show_colorscale [as 别名]
method='lima'))
# Gammapy significance
significance = np.nan_to_num(significance(correlated_counts, correlated_model,
method='lima'))
titles = ['Gammapy Significance', 'Fermi Tools Significance']
#Plot
fig = plt.figure()
hdu1 = fits.ImageHDU(significance, header)
f1 = FITSFigure(hdu1, figure=fig, convention='wells', subplot=[0.15,0.214,0.38,0.494])
f1.set_tick_labels_font(size='x-small')
f1.tick_labels.set_xformat('ddd')
f1.tick_labels.set_yformat('ddd')
f1.show_colorscale(vmin=0, vmax=10)
hdu2 = fits.ImageHDU(fermi_significance, header)
f2 = FITSFigure(hdu2, figure=fig, convention='wells', subplot=[0.56,0.2,0.4,0.52])
f2.set_tick_labels_font(size='x-small')
f2.tick_labels.set_xformat('ddd')
f2.hide_ytick_labels()
f2.hide_yaxis_label()
f2.show_colorscale(vmin=0, vmax=10)
f2.add_colorbar()
f2.colorbar.set_width(0.1)
f2.colorbar.set_location('right')
fig.text(0.22,0.72,"Gammapy Significance",color='black',size='14')
fig.text(0.63,0.72,"Fermi Tools Significance",color='black',size='14')
fig.canvas.draw()
示例13: FITSFigure
# 需要导入模块: from aplpy import FITSFigure [as 别名]
# 或者: from aplpy.FITSFigure import show_colorscale [as 别名]
# Fermi significance
fermi_significance = np.nan_to_num(significance(correlated_counts, gtmodel, method="lima"))
# Gammapy significance
significance = np.nan_to_num(significance(correlated_counts, correlated_model, method="lima"))
titles = ["Gammapy Significance", "Fermi Tools Significance"]
# Plot
fig = plt.figure(figsize=(10, 5))
hdu1 = fits.ImageHDU(significance, header)
f1 = FITSFigure(hdu1, figure=fig, convention="wells", subplot=(1, 2, 1))
f1.set_tick_labels_font(size="x-small")
f1.tick_labels.set_xformat("ddd")
f1.tick_labels.set_yformat("ddd")
f1.show_colorscale(vmin=0, vmax=10, cmap="afmhot")
f1.add_colorbar(axis_label_text="Significance")
f1.colorbar.set_width(0.1)
f1.colorbar.set_location("right")
hdu2 = fits.ImageHDU(fermi_significance, header)
f2 = FITSFigure(hdu2, figure=fig, convention="wells", subplot=(1, 2, 2))
f2.set_tick_labels_font(size="x-small")
f2.tick_labels.set_xformat("ddd")
f2.hide_ytick_labels()
f2.hide_yaxis_label()
f2.show_colorscale(vmin=0, vmax=10, cmap="afmhot")
f2.add_colorbar(axis_label_text="Significance")
f2.colorbar.set_width(0.1)
f2.colorbar.set_location("right")
fig.text(0.15, 0.92, "Gammapy Significance")
示例14: raw_input
# 需要导入模块: from aplpy import FITSFigure [as 别名]
# 或者: from aplpy.FITSFigure import show_colorscale [as 别名]
from aplpy import FITSFigure
from astropy.io import fits
filename = raw_input("File to plot: ")
hdu = fits.open(filename)[1]
fig = FITSFigure(hdu)
fig.show_colorscale(stretch='log', interpolation='none')
#fig.add_colorbar()
#fig.colorbar.set_ticks([0.1e-11, 0.4e-11, 1.2e-11])
#fig.colorbar.set_width(0.1)
#fig.colorbar.set_font('serif')
#fig.colorbar.set_label_properties(size='small')
#fig.hide_ytick_labels()
#fig.hide_yaxis_label()
#fig.hide_xaxis_label()
fig.tick_labels.set_yformat('ddd')
fig.tick_labels.set_xformat('ddd')
fig.set_tick_yspacing(5)
fig.axis_labels.set_font(size='small', family='roman')
fig.set_tick_labels_font('serif')
fig.set_tick_labels_size('small')
fig.save('image.pdf')