本文整理汇总了Python中anuga.file.netcdf.NetCDFFile.xllcorner方法的典型用法代码示例。如果您正苦于以下问题:Python NetCDFFile.xllcorner方法的具体用法?Python NetCDFFile.xllcorner怎么用?Python NetCDFFile.xllcorner使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类anuga.file.netcdf.NetCDFFile
的用法示例。
在下文中一共展示了NetCDFFile.xllcorner方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_read_NetCDFI
# 需要导入模块: from anuga.file.netcdf import NetCDFFile [as 别名]
# 或者: from anuga.file.netcdf.NetCDFFile import xllcorner [as 别名]
def test_read_NetCDFI(self):
# test if read_NetCDF
from anuga.file.netcdf import NetCDFFile
g = Geo_reference(56,1.9,1.9)
file_name = tempfile.mktemp(".geo_referenceTest")
outfile = NetCDFFile(file_name, netcdf_mode_w)
outfile.xllcorner = g.get_xllcorner()
outfile.yllcorner = g.get_yllcorner()
outfile.zone = g.get_zone()
outfile.close()
in_file = NetCDFFile(file_name, netcdf_mode_r)
new_g = Geo_reference(NetCDFObject=in_file)
in_file.close()
os.remove(file_name)
self.assertTrue(g == new_g, ' failed')
示例2: _convert_dem_from_ascii2netcdf
# 需要导入模块: from anuga.file.netcdf import NetCDFFile [as 别名]
# 或者: from anuga.file.netcdf.NetCDFFile import xllcorner [as 别名]
def _convert_dem_from_ascii2netcdf(name_in, name_out = None,
verbose = False):
"""Read Digital Elevation model from the following ASCII format (.asc)
Internal function. See public function convert_dem_from_ascii2netcdf
for details.
"""
import os
from anuga.file.netcdf import NetCDFFile
root = name_in[:-4]
# Read Meta data
if verbose: log.critical('Reading METADATA from %s' % (root + '.prj'))
metadatafile = open(root + '.prj')
metalines = metadatafile.readlines()
metadatafile.close()
L = metalines[0].strip().split()
assert L[0].strip().lower() == 'projection'
projection = L[1].strip() #TEXT
L = metalines[1].strip().split()
assert L[0].strip().lower() == 'zone'
zone = int(L[1].strip())
L = metalines[2].strip().split()
assert L[0].strip().lower() == 'datum'
datum = L[1].strip() #TEXT
L = metalines[3].strip().split()
assert L[0].strip().lower() == 'zunits' #IGNORE
zunits = L[1].strip() #TEXT
L = metalines[4].strip().split()
assert L[0].strip().lower() == 'units'
units = L[1].strip() #TEXT
L = metalines[5].strip().split()
assert L[0].strip().lower() == 'spheroid' #IGNORE
spheroid = L[1].strip() #TEXT
L = metalines[6].strip().split()
assert L[0].strip().lower() == 'xshift'
false_easting = float(L[1].strip())
L = metalines[7].strip().split()
assert L[0].strip().lower() == 'yshift'
false_northing = float(L[1].strip())
if name_in[-4:] != '.asc':
raise IOError('Input file %s should be of type .asc.' % name_in)
#Read DEM data
datafile = open(name_in)
if verbose: log.critical('Reading DEM from %s' % (name_in))
lines = datafile.readlines()
datafile.close()
if verbose: log.critical('Got %d lines' % len(lines))
ncols = int(lines[0].split()[1].strip())
nrows = int(lines[1].split()[1].strip())
# Do cellsize (line 4) before line 2 and 3
cellsize = float(lines[4].split()[1].strip())
# Checks suggested by Joaquim Luis
# Our internal representation of xllcorner
# and yllcorner is non-standard.
xref = lines[2].split()
if xref[0].strip() == 'xllcorner':
xllcorner = float(xref[1].strip()) # + 0.5*cellsize # Correct offset
elif xref[0].strip() == 'xllcenter':
xllcorner = float(xref[1].strip())
else:
msg = 'Unknown keyword: %s' % xref[0].strip()
raise Exception, msg
yref = lines[3].split()
if yref[0].strip() == 'yllcorner':
yllcorner = float(yref[1].strip()) # + 0.5*cellsize # Correct offset
elif yref[0].strip() == 'yllcenter':
yllcorner = float(yref[1].strip())
else:
msg = 'Unknown keyword: %s' % yref[0].strip()
raise Exception, msg
NODATA_value = int(float(lines[5].split()[1].strip()))
assert len(lines) == nrows + 6
if name_out == None:
netcdfname = name_in[:-4]+'.dem'
else:
netcdfname = name_out + '.dem'
#.........这里部分代码省略.........
示例3: dem2dem
# 需要导入模块: from anuga.file.netcdf import NetCDFFile [as 别名]
# 或者: from anuga.file.netcdf.NetCDFFile import xllcorner [as 别名]
def dem2dem(name_in, stencil, cellsize_new, name_out=None,
verbose=False):
"""Read Digitial Elevation model from the following NetCDF format (.dem)
Example:
ncols 3121
nrows 1800
xllcorner 722000
yllcorner 5893000
cellsize 25
NODATA_value -9999
138.3698 137.4194 136.5062 135.5558 ..........
Decimate data to cellsize_new using stencil and write to NetCDF dem format.
"""
import os
from anuga.file.netcdf import NetCDFFile
if name_in[-4:] != '.dem':
raise IOError('Input file %s should be of type .dem.' % name_in)
if name_out != None and basename_out[-4:] != '.dem':
raise IOError('Input file %s should be of type .dem.' % name_out)
#Open existing netcdf file to read
infile = NetCDFFile(name_in, netcdf_mode_r)
if verbose: log.critical('Reading DEM from %s' % inname)
# Read metadata (convert from numpy.int32 to int where appropriate)
ncols = int(infile.ncols)
nrows = int(infile.nrows)
xllcorner = infile.xllcorner
yllcorner = infile.yllcorner
cellsize = int(infile.cellsize)
NODATA_value = int(infile.NODATA_value)
zone = int(infile.zone)
false_easting = infile.false_easting
false_northing = infile.false_northing
projection = infile.projection
datum = infile.datum
units = infile.units
dem_elevation = infile.variables['elevation']
#Get output file name
if name_out == None:
outname = name_in[:-4] + '_' + repr(cellsize_new) + '.dem'
else:
outname = name_out
if verbose: log.critical('Write decimated NetCDF file to %s' % outname)
#Determine some dimensions for decimated grid
(nrows_stencil, ncols_stencil) = stencil.shape
x_offset = ncols_stencil / 2
y_offset = nrows_stencil / 2
cellsize_ratio = int(cellsize_new / cellsize)
ncols_new = 1 + (ncols - ncols_stencil) / cellsize_ratio
nrows_new = 1 + (nrows - nrows_stencil) / cellsize_ratio
#print type(ncols_new), ncols_new
#Open netcdf file for output
outfile = NetCDFFile(outname, netcdf_mode_w)
#Create new file
outfile.institution = 'Geoscience Australia'
outfile.description = 'NetCDF DEM format for compact and portable ' \
'storage of spatial point data'
#Georeferencing
outfile.zone = zone
outfile.projection = projection
outfile.datum = datum
outfile.units = units
outfile.cellsize = cellsize_new
outfile.NODATA_value = NODATA_value
outfile.false_easting = false_easting
outfile.false_northing = false_northing
outfile.xllcorner = xllcorner + (x_offset * cellsize)
outfile.yllcorner = yllcorner + (y_offset * cellsize)
outfile.ncols = ncols_new
outfile.nrows = nrows_new
# dimension definition
#print nrows_new, ncols_new, nrows_new*ncols_new
#print type(nrows_new), type(ncols_new), type(nrows_new*ncols_new)
outfile.createDimension('number_of_points', nrows_new*ncols_new)
# variable definition
outfile.createVariable('elevation', netcdf_float, ('number_of_points',))
# Get handle to the variable
elevation = outfile.variables['elevation']
#.........这里部分代码省略.........
示例4: _sww_merge_parallel_non_smooth
# 需要导入模块: from anuga.file.netcdf import NetCDFFile [as 别名]
# 或者: from anuga.file.netcdf.NetCDFFile import xllcorner [as 别名]
def _sww_merge_parallel_non_smooth(swwfiles, output, verbose=False, delete_old=False):
"""
Merge a list of sww files into a single file.
Used to merge files created by parallel runs.
The sww files to be merged must have exactly the same timesteps.
It is assumed that the separate sww files have been stored in non_smooth
format.
Note that some advanced information and custom quantities may not be
exported.
swwfiles is a list of .sww files to merge.
output is the output filename, including .sww extension.
verbose True to log output information
"""
if verbose:
print "MERGING SWW Files"
first_file = True
tri_offset = 0
for filename in swwfiles:
if verbose:
print 'Reading file ', filename, ':'
fid = NetCDFFile(filename, netcdf_mode_r)
if first_file:
times = fid.variables['time'][:]
n_steps = len(times)
number_of_timesteps = fid.dimensions['number_of_timesteps']
#print n_steps, number_of_timesteps
starttime = int(fid.starttime)
out_s_quantities = {}
out_d_quantities = {}
out_s_c_quantities = {}
out_d_c_quantities = {}
xllcorner = fid.xllcorner
yllcorner = fid.yllcorner
number_of_global_triangles = int(fid.number_of_global_triangles)
number_of_global_nodes = int(fid.number_of_global_nodes)
number_of_global_triangle_vertices = 3*number_of_global_triangles
order = fid.order
xllcorner = fid.xllcorner;
yllcorner = fid.yllcorner ;
zone = fid.zone;
false_easting = fid.false_easting;
false_northing = fid.false_northing;
datum = fid.datum;
projection = fid.projection;
g_volumes = num.arange(number_of_global_triangles*3).reshape(-1,3)
g_x = num.zeros((number_of_global_triangle_vertices,),num.float32)
g_y = num.zeros((number_of_global_triangle_vertices,),num.float32)
g_points = num.zeros((number_of_global_triangle_vertices,2),num.float32)
#=======================================
# Deal with the vertex based variables
#=======================================
quantities = set(['elevation', 'friction', 'stage', 'xmomentum',
'ymomentum', 'xvelocity', 'yvelocity', 'height'])
variables = set(fid.variables.keys())
quantities = list(quantities & variables)
static_quantities = []
dynamic_quantities = []
for quantity in quantities:
# Test if elevation is static
if n_steps == fid.variables[quantity].shape[0]:
dynamic_quantities.append(quantity)
else:
static_quantities.append(quantity)
# Static Quantities are stored as a 1D array
for quantity in static_quantities:
out_s_quantities[quantity] = num.zeros((3*number_of_global_triangles,),num.float32)
#=======================================
# Deal with the centroid based variables
#=======================================
quantities = set(['elevation_c', 'friction_c', 'stage_c', 'xmomentum_c',
'ymomentum_c', 'xvelocity_c', 'yvelocity_c', 'height_c'])
#.........这里部分代码省略.........
示例5: _sww_merge
# 需要导入模块: from anuga.file.netcdf import NetCDFFile [as 别名]
# 或者: from anuga.file.netcdf.NetCDFFile import xllcorner [as 别名]
def _sww_merge(swwfiles, output, verbose=False):
"""
Merge a list of sww files into a single file.
May be useful for parallel runs. Note that colinear points and
edges are not merged: there will essentially be multiple meshes within
the one sww file.
The sww files to be merged must have exactly the same timesteps. Note
that some advanced information and custom quantities may not be
exported.
swwfiles is a list of .sww files to merge.
output is the output filename, including .sww extension.
verbose True to log output information
"""
if verbose:
print "MERGING SWW Files"
static_quantities = ['elevation']
dynamic_quantities = ['stage', 'xmomentum', 'ymomentum']
first_file = True
tri_offset = 0
for filename in swwfiles:
if verbose:
print 'Reading file ', filename, ':'
fid = NetCDFFile(filename, netcdf_mode_r)
tris = fid.variables['volumes'][:]
if first_file:
times = fid.variables['time'][:]
x = []
y = []
out_tris = list(tris)
out_s_quantities = {}
out_d_quantities = {}
xllcorner = fid.xllcorner
yllcorner = fid.yllcorner
order = fid.order
xllcorner = fid.xllcorner;
yllcorner = fid.yllcorner ;
zone = fid.zone;
false_easting = fid.false_easting;
false_northing = fid.false_northing;
datum = fid.datum;
projection = fid.projection;
for quantity in static_quantities:
out_s_quantities[quantity] = []
# Quantities are stored as a 2D array of timesteps x data.
for quantity in dynamic_quantities:
out_d_quantities[quantity] = [ [] for _ in range(len(times))]
description = 'merged:' + getattr(fid, 'description')
first_file = False
else:
for tri in tris:
# Advance new tri indices to point at newly appended points.
verts = [vertex+tri_offset for vertex in tri]
out_tris.append(verts)
try: # works with netcdf4
num_pts = len(fid.dimensions['number_of_points'])
except: # works with scientific.io.netcdf
num_pts = int(fid.dimensions['number_of_points'])
tri_offset += num_pts
if verbose:
print ' new triangle index offset is ', tri_offset
x.extend(list(fid.variables['x'][:]))
y.extend(list(fid.variables['y'][:]))
# Grow the list of static quantities associated with the x,y points
for quantity in static_quantities:
out_s_quantities[quantity].extend(fid.variables[quantity][:])
#Collate all dynamic quantities according to their timestep
for quantity in dynamic_quantities:
time_chunks = fid.variables[quantity][:]
for i, time_chunk in enumerate(time_chunks):
out_d_quantities[quantity][i].extend(time_chunk)
# Mash all points into a single big list
#.........这里部分代码省略.........
示例6: _sww_merge_parallel_smooth
# 需要导入模块: from anuga.file.netcdf import NetCDFFile [as 别名]
# 或者: from anuga.file.netcdf.NetCDFFile import xllcorner [as 别名]
def _sww_merge_parallel_smooth(swwfiles, output, verbose=False, delete_old=False):
"""
Merge a list of sww files into a single file.
Use to merge files created by parallel runs.
The sww files to be merged must have exactly the same timesteps.
It is assumed that the separate sww files have been stored in non_smooth
format.
Note that some advanced information and custom quantities may not be
exported.
swwfiles is a list of .sww files to merge.
output is the output filename, including .sww extension.
verbose True to log output information
"""
if verbose:
print "MERGING SWW Files"
first_file = True
tri_offset = 0
for filename in swwfiles:
if verbose:
print 'Reading file ', filename, ':'
fid = NetCDFFile(filename, netcdf_mode_r)
if first_file:
times = fid.variables['time'][:]
n_steps = len(times)
#number_of_timesteps = fid.dimensions['number_of_timesteps']
#print n_steps, number_of_timesteps
starttime = int(fid.starttime)
out_s_quantities = {}
out_d_quantities = {}
out_s_c_quantities = {}
out_d_c_quantities = {}
xllcorner = fid.xllcorner
yllcorner = fid.yllcorner
number_of_global_triangles = int(fid.number_of_global_triangles)
number_of_global_nodes = int(fid.number_of_global_nodes)
order = fid.order
xllcorner = fid.xllcorner;
yllcorner = fid.yllcorner ;
zone = fid.zone;
false_easting = fid.false_easting;
false_northing = fid.false_northing;
datum = fid.datum;
projection = fid.projection;
g_volumes = num.zeros((number_of_global_triangles,3),num.int)
g_x = num.zeros((number_of_global_nodes,),num.float32)
g_y = num.zeros((number_of_global_nodes,),num.float32)
g_points = num.zeros((number_of_global_nodes,2),num.float32)
#=====================================
# Deal with the vertex based variables
#=====================================
quantities = set(['elevation', 'friction', 'stage', 'xmomentum',
'ymomentum', 'xvelocity', 'yvelocity', 'height'])
variables = set(fid.variables.keys())
quantities = list(quantities & variables)
static_quantities = []
dynamic_quantities = []
for quantity in quantities:
# Test if quantity is static
if n_steps == fid.variables[quantity].shape[0]:
dynamic_quantities.append(quantity)
else:
static_quantities.append(quantity)
for quantity in static_quantities:
out_s_quantities[quantity] = num.zeros((number_of_global_nodes,),num.float32)
# Quantities are stored as a 2D array of timesteps x data.
for quantity in dynamic_quantities:
out_d_quantities[quantity] = \
num.zeros((n_steps,number_of_global_nodes),num.float32)
#=======================================
# Deal with the centroid based variables
#=======================================
quantities = set(['elevation_c', 'friction_c', 'stage_c', 'xmomentum_c',
'ymomentum_c', 'xvelocity_c', 'yvelocity_c', 'height_c'])
variables = set(fid.variables.keys())
#.........这里部分代码省略.........
示例7: _generic_dem2pts
# 需要导入模块: from anuga.file.netcdf import NetCDFFile [as 别名]
# 或者: from anuga.file.netcdf.NetCDFFile import xllcorner [as 别名]
def _generic_dem2pts(
self,
name_in,
name_out=None,
quantity_name=None,
verbose=False,
easting_min=None,
easting_max=None,
northing_min=None,
northing_max=None,
):
"""Read raster from the following NetCDF format (.dem)
Internal function. See public function generic_dem2pts for details.
"""
# FIXME: Can this be written feasibly using write_pts?
import os
from anuga.file.netcdf import NetCDFFile
root = name_in[:-4]
if name_in[-4:] == ".asc":
intermediate = root + ".dem"
if verbose:
log.critical("Preconvert %s from asc to %s" % (name_in, intermediate))
asc2dem(name_in)
name_in = intermediate
elif name_in[-4:] != ".dem":
raise IOError("Input file %s should be of type .asc or .dem." % name_in)
if name_out != None and basename_out[-4:] != ".pts":
raise IOError("Input file %s should be of type .pts." % name_out)
# Get NetCDF
infile = NetCDFFile(name_in, netcdf_mode_r)
if verbose:
log.critical("Reading raster from %s" % (name_in))
ncols = int(infile.ncols)
nrows = int(infile.nrows)
xllcorner = float(infile.xllcorner) # Easting of lower left corner
yllcorner = float(infile.yllcorner) # Northing of lower left corner
cellsize = float(infile.cellsize)
NODATA_value = float(infile.NODATA_value)
dem_elevation = infile.variables[quantity_name]
zone = int(infile.zone)
false_easting = float(infile.false_easting)
false_northing = float(infile.false_northing)
# print ncols, nrows, xllcorner,yllcorner, cellsize, NODATA_value, zone
# Text strings
projection = infile.projection
datum = infile.datum
units = infile.units
# print projection, datum, units
# Get output file
if name_out == None:
ptsname = root + ".pts"
else:
ptsname = name_out
if verbose:
log.critical("Store to NetCDF file %s" % ptsname)
# NetCDF file definition
outfile = NetCDFFile(ptsname, netcdf_mode_w)
# Create new file
outfile.institution = "Geoscience Australia"
outfile.description = "NetCDF pts format for compact and portable " "storage of spatial point data"
# Assign default values
if easting_min is None:
easting_min = xllcorner
if easting_max is None:
easting_max = xllcorner + ncols * cellsize
if northing_min is None:
northing_min = yllcorner
if northing_max is None:
northing_max = yllcorner + nrows * cellsize
# print easting_min, easting_max, northing_min, northing_max
# Compute offsets to update georeferencing
easting_offset = xllcorner - easting_min
northing_offset = yllcorner - northing_min
# Georeferencing
outfile.zone = zone
outfile.xllcorner = easting_min # Easting of lower left corner
outfile.yllcorner = northing_min # Northing of lower left corner
outfile.false_easting = false_easting
#.........这里部分代码省略.........
示例8: _dem2pts
# 需要导入模块: from anuga.file.netcdf import NetCDFFile [as 别名]
# 或者: from anuga.file.netcdf.NetCDFFile import xllcorner [as 别名]
def _dem2pts(name_in, name_out=None, verbose=False,
easting_min=None, easting_max=None,
northing_min=None, northing_max=None):
"""Read Digitial Elevation model from the following NetCDF format (.dem)
Internal function. See public function dem2pts for details.
"""
# FIXME: Can this be written feasibly using write_pts?
import os
from anuga.file.netcdf import NetCDFFile
root = name_in[:-4]
if name_in[-4:] == '.asc':
intermediate = root + '.dem'
if verbose:
log.critical('Preconvert %s from asc to %s' % \
(name_in, intermediate))
asc2dem(name_in)
name_in = intermediate
elif name_in[-4:] != '.dem':
raise IOError('Input file %s should be of type .asc or .dem.' % name_in)
if name_out != None and basename_out[-4:] != '.pts':
raise IOError('Input file %s should be of type .pts.' % name_out)
# Get NetCDF
infile = NetCDFFile(name_in, netcdf_mode_r)
if verbose: log.critical('Reading DEM from %s' % (name_in))
ncols = int(infile.ncols)
nrows = int(infile.nrows)
xllcorner = float(infile.xllcorner) # Easting of lower left corner
yllcorner = float(infile.yllcorner) # Northing of lower left corner
cellsize = float(infile.cellsize)
NODATA_value = float(infile.NODATA_value)
dem_elevation = infile.variables['elevation']
zone = int(infile.zone)
false_easting = float(infile.false_easting)
false_northing = float(infile.false_northing)
#print ncols, nrows, xllcorner,yllcorner, cellsize, NODATA_value, zone
# Text strings
projection = infile.projection
datum = infile.datum
units = infile.units
#print projection, datum, units
# Get output file
if name_out == None:
ptsname = root + '.pts'
else:
ptsname = name_out
if verbose: log.critical('Store to NetCDF file %s' % ptsname)
# NetCDF file definition
outfile = NetCDFFile(ptsname, netcdf_mode_w)
# Create new file
outfile.institution = 'Geoscience Australia'
outfile.description = 'NetCDF pts format for compact and portable ' \
'storage of spatial point data'
# Assign default values
if easting_min is None: easting_min = xllcorner
if easting_max is None: easting_max = xllcorner + ncols*cellsize
if northing_min is None: northing_min = yllcorner
if northing_max is None: northing_max = yllcorner + nrows*cellsize
#print easting_min, easting_max, northing_min, northing_max
# Compute offsets to update georeferencing
easting_offset = xllcorner - easting_min
northing_offset = yllcorner - northing_min
# Georeferencing
outfile.zone = zone
outfile.xllcorner = easting_min # Easting of lower left corner
outfile.yllcorner = northing_min # Northing of lower left corner
outfile.false_easting = false_easting
outfile.false_northing = false_northing
outfile.projection = projection
outfile.datum = datum
outfile.units = units
# Grid info (FIXME: probably not going to be used, but heck)
outfile.ncols = ncols
outfile.nrows = nrows
#.........这里部分代码省略.........
示例9: test_decimate_dem
# 需要导入模块: from anuga.file.netcdf import NetCDFFile [as 别名]
# 或者: from anuga.file.netcdf.NetCDFFile import xllcorner [as 别名]
def test_decimate_dem(self):
"""Test decimation of dem file
"""
import os
from anuga.file.netcdf import NetCDFFile
# Write test dem file
root = "decdemtest"
filename = root + ".dem"
fid = NetCDFFile(filename, netcdf_mode_w)
fid.institution = "Geoscience Australia"
fid.description = "NetCDF DEM format for compact and portable " + "storage of spatial point data"
nrows = 15
ncols = 18
fid.ncols = ncols
fid.nrows = nrows
fid.xllcorner = 2000.5
fid.yllcorner = 3000.5
fid.cellsize = 25
fid.NODATA_value = -9999
fid.zone = 56
fid.false_easting = 0.0
fid.false_northing = 0.0
fid.projection = "UTM"
fid.datum = "WGS84"
fid.units = "METERS"
fid.createDimension("number_of_points", nrows * ncols)
fid.createVariable("elevation", netcdf_float, ("number_of_points",))
elevation = fid.variables["elevation"]
elevation[:] = num.arange(nrows * ncols)
fid.close()
# generate the elevation values expected in the decimated file
ref_elevation = [
(0 + 1 + 2 + 18 + 19 + 20 + 36 + 37 + 38) / 9.0,
(4 + 5 + 6 + 22 + 23 + 24 + 40 + 41 + 42) / 9.0,
(8 + 9 + 10 + 26 + 27 + 28 + 44 + 45 + 46) / 9.0,
(12 + 13 + 14 + 30 + 31 + 32 + 48 + 49 + 50) / 9.0,
(72 + 73 + 74 + 90 + 91 + 92 + 108 + 109 + 110) / 9.0,
(76 + 77 + 78 + 94 + 95 + 96 + 112 + 113 + 114) / 9.0,
(80 + 81 + 82 + 98 + 99 + 100 + 116 + 117 + 118) / 9.0,
(84 + 85 + 86 + 102 + 103 + 104 + 120 + 121 + 122) / 9.0,
(144 + 145 + 146 + 162 + 163 + 164 + 180 + 181 + 182) / 9.0,
(148 + 149 + 150 + 166 + 167 + 168 + 184 + 185 + 186) / 9.0,
(152 + 153 + 154 + 170 + 171 + 172 + 188 + 189 + 190) / 9.0,
(156 + 157 + 158 + 174 + 175 + 176 + 192 + 193 + 194) / 9.0,
(216 + 217 + 218 + 234 + 235 + 236 + 252 + 253 + 254) / 9.0,
(220 + 221 + 222 + 238 + 239 + 240 + 256 + 257 + 258) / 9.0,
(224 + 225 + 226 + 242 + 243 + 244 + 260 + 261 + 262) / 9.0,
(228 + 229 + 230 + 246 + 247 + 248 + 264 + 265 + 266) / 9.0,
]
# generate a stencil for computing the decimated values
stencil = num.ones((3, 3), num.float) / 9.0
dem2dem(filename, stencil=stencil, cellsize_new=100)
# Open decimated NetCDF file
fid = NetCDFFile(root + "_100.dem", netcdf_mode_r)
# Get decimated elevation
elevation = fid.variables["elevation"]
# Check values
assert num.allclose(elevation, ref_elevation)
# Cleanup
fid.close()
os.remove(root + ".dem")
os.remove(root + "_100.dem")