当前位置: 首页>>代码示例>>Python>>正文


Python Trainer._restore_checkpoint方法代码示例

本文整理汇总了Python中allennlp.training.trainer.Trainer._restore_checkpoint方法的典型用法代码示例。如果您正苦于以下问题:Python Trainer._restore_checkpoint方法的具体用法?Python Trainer._restore_checkpoint怎么用?Python Trainer._restore_checkpoint使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在allennlp.training.trainer.Trainer的用法示例。


在下文中一共展示了Trainer._restore_checkpoint方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_trainer_can_resume_with_lr_scheduler

# 需要导入模块: from allennlp.training.trainer import Trainer [as 别名]
# 或者: from allennlp.training.trainer.Trainer import _restore_checkpoint [as 别名]
    def test_trainer_can_resume_with_lr_scheduler(self):
        # pylint: disable=protected-access
        lr_scheduler = LearningRateScheduler.from_params(
                self.optimizer, Params({"type": "exponential", "gamma": 0.5}))
        trainer = Trainer(model=self.model,
                          optimizer=self.optimizer,
                          iterator=self.iterator,
                          learning_rate_scheduler=lr_scheduler,
                          train_dataset=self.instances,
                          validation_dataset=self.instances,
                          num_epochs=2, serialization_dir=self.TEST_DIR)
        trainer.train()

        new_lr_scheduler = LearningRateScheduler.from_params(
                self.optimizer, Params({"type": "exponential", "gamma": 0.5}))
        new_trainer = Trainer(model=self.model,
                              optimizer=self.optimizer,
                              iterator=self.iterator,
                              learning_rate_scheduler=new_lr_scheduler,
                              train_dataset=self.instances,
                              validation_dataset=self.instances,
                              num_epochs=4, serialization_dir=self.TEST_DIR)
        epoch, _ = new_trainer._restore_checkpoint()
        assert epoch == 2
        assert new_trainer._learning_rate_scheduler.lr_scheduler.last_epoch == 1
        new_trainer.train()
开发者ID:ziaridoy20,项目名称:allennlp,代码行数:28,代码来源:trainer_test.py

示例2: test_trainer_can_resume_training

# 需要导入模块: from allennlp.training.trainer import Trainer [as 别名]
# 或者: from allennlp.training.trainer.Trainer import _restore_checkpoint [as 别名]
    def test_trainer_can_resume_training(self):
        trainer = Trainer(self.model, self.optimizer,
                          self.iterator, self.instances,
                          validation_dataset=self.instances,
                          num_epochs=1, serialization_dir=self.TEST_DIR)
        trainer.train()
        new_trainer = Trainer(self.model, self.optimizer,
                              self.iterator, self.instances,
                              validation_dataset=self.instances,
                              num_epochs=3, serialization_dir=self.TEST_DIR)

        epoch, val_metrics_per_epoch = new_trainer._restore_checkpoint()  # pylint: disable=protected-access
        assert epoch == 1
        assert len(val_metrics_per_epoch) == 1
        assert isinstance(val_metrics_per_epoch[0], float)
        assert val_metrics_per_epoch[0] != 0.
        new_trainer.train()
开发者ID:ziaridoy20,项目名称:allennlp,代码行数:19,代码来源:trainer_test.py

示例3: test_trainer_saves_models_at_specified_interval

# 需要导入模块: from allennlp.training.trainer import Trainer [as 别名]
# 或者: from allennlp.training.trainer.Trainer import _restore_checkpoint [as 别名]
    def test_trainer_saves_models_at_specified_interval(self):
        iterator = BasicIterator(batch_size=4)
        iterator.index_with(self.vocab)

        trainer = Trainer(self.model, self.optimizer,
                          iterator, self.instances, num_epochs=2,
                          serialization_dir=self.TEST_DIR,
                          model_save_interval=0.0001)

        trainer.train()

        # Now check the serialized files for models saved during the epoch.
        prefix = 'model_state_epoch_*'
        file_names = sorted(glob.glob(os.path.join(self.TEST_DIR, prefix)))
        epochs = [re.search(r"_([0-9\.\-]+)\.th", fname).group(1)
                  for fname in file_names]
        # We should have checkpoints at the end of each epoch and during each, e.g.
        # [0.timestamp, 0, 1.timestamp, 1]
        assert len(epochs) == 4
        assert epochs[3] == '1'
        assert '.' in epochs[0]

        # Now make certain we can restore from timestamped checkpoint.
        # To do so, remove the checkpoint from the end of epoch 1&2, so
        # that we are forced to restore from the timestamped checkpoints.
        for k in range(2):
            os.remove(os.path.join(self.TEST_DIR, 'model_state_epoch_{}.th'.format(k)))
            os.remove(os.path.join(self.TEST_DIR, 'training_state_epoch_{}.th'.format(k)))
        os.remove(os.path.join(self.TEST_DIR, 'best.th'))

        restore_trainer = Trainer(self.model, self.optimizer,
                                  self.iterator, self.instances, num_epochs=2,
                                  serialization_dir=self.TEST_DIR,
                                  model_save_interval=0.0001)
        epoch, _ = restore_trainer._restore_checkpoint()  # pylint: disable=protected-access
        assert epoch == 2
        # One batch per epoch.
        assert restore_trainer._batch_num_total == 2  # pylint: disable=protected-access
开发者ID:ziaridoy20,项目名称:allennlp,代码行数:40,代码来源:trainer_test.py


注:本文中的allennlp.training.trainer.Trainer._restore_checkpoint方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。