本文整理汇总了Python中allennlp.training.trainer.Trainer类的典型用法代码示例。如果您正苦于以下问题:Python Trainer类的具体用法?Python Trainer怎么用?Python Trainer使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Trainer类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_trainer_can_run_multiple_gpu
def test_trainer_can_run_multiple_gpu(self):
multigpu_iterator = BasicIterator(batch_size=4)
multigpu_iterator.index_with(self.vocab)
trainer = Trainer(self.model, self.optimizer,
multigpu_iterator, self.instances, num_epochs=2,
cuda_device=[0, 1])
trainer.train()
示例2: test_trainer_respects_keep_serialized_model_every_num_seconds
def test_trainer_respects_keep_serialized_model_every_num_seconds(self):
# To test:
# Create an iterator that sleeps for 2.5 second per epoch, so the total training
# time for one epoch is slightly greater then 2.5 seconds.
# Run for 6 epochs, keeping the last 2 models, models also kept every 5 seconds.
# Check the resulting checkpoints. Should then have models at epochs
# 2, 4, plus the last two at 5 and 6.
class WaitingIterator(BasicIterator):
# pylint: disable=arguments-differ
def _create_batches(self, *args, **kwargs):
time.sleep(2.5)
return super(WaitingIterator, self)._create_batches(*args, **kwargs)
iterator = WaitingIterator(batch_size=2)
iterator.index_with(self.vocab)
trainer = Trainer(self.model, self.optimizer,
iterator, self.instances, num_epochs=6,
serialization_dir=self.TEST_DIR,
num_serialized_models_to_keep=2,
keep_serialized_model_every_num_seconds=5)
trainer.train()
# Now check the serialized files
for prefix in ['model_state_epoch_*', 'training_state_epoch_*']:
file_names = glob.glob(os.path.join(self.TEST_DIR, prefix))
epochs = [int(re.search(r"_([0-9])\.th", fname).group(1))
for fname in file_names]
# epoch N has N-1 in file name
assert sorted(epochs) == [1, 3, 4, 5]
示例3: test_trainer_can_run
def test_trainer_can_run(self):
trainer = Trainer(model=self.model,
optimizer=self.optimizer,
iterator=self.iterator,
train_dataset=self.instances,
validation_dataset=self.instances,
num_epochs=2)
metrics = trainer.train()
assert 'best_validation_loss' in metrics
assert isinstance(metrics['best_validation_loss'], float)
assert 'best_validation_accuracy' in metrics
assert isinstance(metrics['best_validation_accuracy'], float)
assert 'best_validation_accuracy3' in metrics
assert isinstance(metrics['best_validation_accuracy3'], float)
assert 'best_epoch' in metrics
assert isinstance(metrics['best_epoch'], int)
# Making sure that both increasing and decreasing validation metrics work.
trainer = Trainer(model=self.model,
optimizer=self.optimizer,
iterator=self.iterator,
train_dataset=self.instances,
validation_dataset=self.instances,
validation_metric='+loss',
num_epochs=2)
metrics = trainer.train()
assert 'best_validation_loss' in metrics
assert isinstance(metrics['best_validation_loss'], float)
assert 'best_validation_accuracy' in metrics
assert isinstance(metrics['best_validation_accuracy'], float)
assert 'best_validation_accuracy3' in metrics
assert isinstance(metrics['best_validation_accuracy3'], float)
assert 'best_epoch' in metrics
assert isinstance(metrics['best_epoch'], int)
示例4: test_trainer_can_run_multiple_gpu
def test_trainer_can_run_multiple_gpu(self):
class MetaDataCheckWrapper(Model):
"""
Checks that the metadata field has been correctly split across the batch dimension
when running on multiple gpus.
"""
def __init__(self, model):
super().__init__(model.vocab)
self.model = model
def forward(self, **kwargs) -> Dict[str, torch.Tensor]: # type: ignore # pylint: disable=arguments-differ
assert 'metadata' in kwargs and 'tags' in kwargs, \
f'tokens and metadata must be provided. Got {kwargs.keys()} instead.'
batch_size = kwargs['tokens']['tokens'].size()[0]
assert len(kwargs['metadata']) == batch_size, \
f'metadata must be split appropriately. Expected {batch_size} elements, ' \
f"got {len(kwargs['metadata'])} elements."
return self.model.forward(**kwargs)
multigpu_iterator = BasicIterator(batch_size=4)
multigpu_iterator.index_with(self.vocab)
trainer = Trainer(MetaDataCheckWrapper(self.model), self.optimizer,
multigpu_iterator, self.instances, num_epochs=2,
cuda_device=[0, 1])
trainer.train()
示例5: test_should_stop_early_with_increasing_metric
def test_should_stop_early_with_increasing_metric(self):
new_trainer = Trainer(self.model, self.optimizer,
self.iterator, self.instances,
validation_dataset=self.instances,
num_epochs=3, serialization_dir=self.TEST_DIR,
patience=5, validation_metric="+test")
assert new_trainer._should_stop_early([.5, .3, .2, .1, .4, .4]) # pylint: disable=protected-access
assert not new_trainer._should_stop_early([.3, .3, .3, .2, .5, .1]) # pylint: disable=protected-access
示例6: test_trainer_raises_on_model_with_no_loss_key
def test_trainer_raises_on_model_with_no_loss_key(self):
class FakeModel(torch.nn.Module):
def forward(self, **kwargs): # pylint: disable=arguments-differ,unused-argument
return {}
with pytest.raises(RuntimeError):
trainer = Trainer(FakeModel(), self.optimizer,
self.iterator, self.instances,
num_epochs=2, serialization_dir=self.TEST_DIR)
trainer.train()
示例7: test_trainer_can_log_histograms
def test_trainer_can_log_histograms(self):
# enable activation logging
for module in self.model.modules():
module.should_log_activations = True
trainer = Trainer(self.model, self.optimizer,
self.iterator, self.instances, num_epochs=3,
serialization_dir=self.TEST_DIR,
histogram_interval=2)
trainer.train()
示例8: test_trainer_can_log_learning_rates_tensorboard
def test_trainer_can_log_learning_rates_tensorboard(self):
iterator = BasicIterator(batch_size=4)
iterator.index_with(self.vocab)
trainer = Trainer(self.model, self.optimizer,
iterator, self.instances, num_epochs=2,
serialization_dir=self.TEST_DIR,
should_log_learning_rate=True,
summary_interval=2)
trainer.train()
示例9: test_trainer_can_run_with_lr_scheduler
def test_trainer_can_run_with_lr_scheduler(self):
lr_params = Params({"type": "reduce_on_plateau"})
lr_scheduler = LearningRateScheduler.from_params(self.optimizer, lr_params)
trainer = Trainer(model=self.model,
optimizer=self.optimizer,
iterator=self.iterator,
learning_rate_scheduler=lr_scheduler,
validation_metric="-loss",
train_dataset=self.instances,
validation_dataset=self.instances,
num_epochs=2)
trainer.train()
示例10: test_trainer_respects_num_serialized_models_to_keep
def test_trainer_respects_num_serialized_models_to_keep(self):
trainer = Trainer(self.model, self.optimizer,
self.iterator, self.instances, num_epochs=5,
serialization_dir=self.TEST_DIR,
num_serialized_models_to_keep=3)
trainer.train()
# Now check the serialized files
for prefix in ['model_state_epoch_*', 'training_state_epoch_*']:
file_names = glob.glob(os.path.join(self.TEST_DIR, prefix))
epochs = [int(re.search(r"_([0-9])\.th", fname).group(1))
for fname in file_names]
assert sorted(epochs) == [2, 3, 4]
示例11: test_metric_only_considered_best_so_far_when_strictly_better_than_those_before_it_decreasing_metric
def test_metric_only_considered_best_so_far_when_strictly_better_than_those_before_it_decreasing_metric(self):
new_trainer = Trainer(self.model, self.optimizer,
self.iterator, self.instances,
validation_dataset=self.instances,
num_epochs=3, serialization_dir=self.TEST_DIR,
patience=5, validation_metric="-test")
# when it is the only metric it should be considered the best
assert new_trainer._is_best_so_far(1, []) # pylint: disable=protected-access
# when it is the same as one before it it is not considered the best
assert not new_trainer._is_best_so_far(.3, [.3, .3, .3, .2, .5, .1]) # pylint: disable=protected-access
# when it is the best it is considered the best
assert new_trainer._is_best_so_far(.013, [.3, .3, .3, .2, .5, .1]) # pylint: disable=protected-access
# when it is not the the best it is not considered the best
assert not new_trainer._is_best_so_far(13.00, [.3, .3, .3, .2, .5, .1]) # pylint: disable=protected-access
示例12: test_should_stop_early_with_early_stopping_disabled
def test_should_stop_early_with_early_stopping_disabled(self):
# Increasing metric
trainer = Trainer(self.model, self.optimizer, self.iterator, self.instances,
validation_dataset=self.instances, num_epochs=100,
patience=None, validation_metric="+test")
decreasing_history = [float(i) for i in reversed(range(20))]
assert not trainer._should_stop_early(decreasing_history) # pylint: disable=protected-access
# Decreasing metric
trainer = Trainer(self.model, self.optimizer, self.iterator, self.instances,
validation_dataset=self.instances, num_epochs=100,
patience=None, validation_metric="-test")
increasing_history = [float(i) for i in range(20)]
assert not trainer._should_stop_early(increasing_history) # pylint: disable=protected-access
示例13: test_trainer_can_resume_with_lr_scheduler
def test_trainer_can_resume_with_lr_scheduler(self):
# pylint: disable=protected-access
lr_scheduler = LearningRateScheduler.from_params(
self.optimizer, Params({"type": "exponential", "gamma": 0.5}))
trainer = Trainer(model=self.model,
optimizer=self.optimizer,
iterator=self.iterator,
learning_rate_scheduler=lr_scheduler,
train_dataset=self.instances,
validation_dataset=self.instances,
num_epochs=2, serialization_dir=self.TEST_DIR)
trainer.train()
new_lr_scheduler = LearningRateScheduler.from_params(
self.optimizer, Params({"type": "exponential", "gamma": 0.5}))
new_trainer = Trainer(model=self.model,
optimizer=self.optimizer,
iterator=self.iterator,
learning_rate_scheduler=new_lr_scheduler,
train_dataset=self.instances,
validation_dataset=self.instances,
num_epochs=4, serialization_dir=self.TEST_DIR)
epoch, _ = new_trainer._restore_checkpoint()
assert epoch == 2
assert new_trainer._learning_rate_scheduler.lr_scheduler.last_epoch == 1
new_trainer.train()
示例14: test_trainer_saves_metrics_every_epoch
def test_trainer_saves_metrics_every_epoch(self):
trainer = Trainer(model=self.model,
optimizer=self.optimizer,
iterator=self.iterator,
train_dataset=self.instances,
validation_dataset=self.instances,
num_epochs=5,
serialization_dir=self.TEST_DIR,
num_serialized_models_to_keep=3)
trainer.train()
for epoch in range(5):
epoch_file = self.TEST_DIR / f'metrics_epoch_{epoch}.json'
assert epoch_file.exists()
metrics = json.load(open(epoch_file))
assert "validation_loss" in metrics
assert "best_validation_loss" in metrics
assert metrics.get("epoch") == epoch
示例15: test_trainer_saves_models_at_specified_interval
def test_trainer_saves_models_at_specified_interval(self):
iterator = BasicIterator(batch_size=4)
iterator.index_with(self.vocab)
trainer = Trainer(self.model, self.optimizer,
iterator, self.instances, num_epochs=2,
serialization_dir=self.TEST_DIR,
model_save_interval=0.0001)
trainer.train()
# Now check the serialized files for models saved during the epoch.
prefix = 'model_state_epoch_*'
file_names = sorted(glob.glob(os.path.join(self.TEST_DIR, prefix)))
epochs = [re.search(r"_([0-9\.\-]+)\.th", fname).group(1)
for fname in file_names]
# We should have checkpoints at the end of each epoch and during each, e.g.
# [0.timestamp, 0, 1.timestamp, 1]
assert len(epochs) == 4
assert epochs[3] == '1'
assert '.' in epochs[0]
# Now make certain we can restore from timestamped checkpoint.
# To do so, remove the checkpoint from the end of epoch 1&2, so
# that we are forced to restore from the timestamped checkpoints.
for k in range(2):
os.remove(os.path.join(self.TEST_DIR, 'model_state_epoch_{}.th'.format(k)))
os.remove(os.path.join(self.TEST_DIR, 'training_state_epoch_{}.th'.format(k)))
os.remove(os.path.join(self.TEST_DIR, 'best.th'))
restore_trainer = Trainer(self.model, self.optimizer,
self.iterator, self.instances, num_epochs=2,
serialization_dir=self.TEST_DIR,
model_save_interval=0.0001)
epoch, _ = restore_trainer._restore_checkpoint() # pylint: disable=protected-access
assert epoch == 2
# One batch per epoch.
assert restore_trainer._batch_num_total == 2 # pylint: disable=protected-access