本文整理汇总了Python中allennlp.common.Params.pop方法的典型用法代码示例。如果您正苦于以下问题:Python Params.pop方法的具体用法?Python Params.pop怎么用?Python Params.pop使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类allennlp.common.Params
的用法示例。
在下文中一共展示了Params.pop方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: extend_from_instances
# 需要导入模块: from allennlp.common import Params [as 别名]
# 或者: from allennlp.common.Params import pop [as 别名]
def extend_from_instances(self,
params: Params,
instances: Iterable['adi.Instance'] = ()) -> None:
"""
Extends an already generated vocabulary using a collection of instances.
"""
min_count = params.pop("min_count", None)
max_vocab_size = pop_max_vocab_size(params)
non_padded_namespaces = params.pop("non_padded_namespaces", DEFAULT_NON_PADDED_NAMESPACES)
pretrained_files = params.pop("pretrained_files", {})
min_pretrained_embeddings = params.pop("min_pretrained_embeddings", None)
only_include_pretrained_words = params.pop_bool("only_include_pretrained_words", False)
tokens_to_add = params.pop("tokens_to_add", None)
params.assert_empty("Vocabulary - from dataset")
logger.info("Fitting token dictionary from dataset.")
namespace_token_counts: Dict[str, Dict[str, int]] = defaultdict(lambda: defaultdict(int))
for instance in Tqdm.tqdm(instances):
instance.count_vocab_items(namespace_token_counts)
self._extend(counter=namespace_token_counts,
min_count=min_count,
max_vocab_size=max_vocab_size,
non_padded_namespaces=non_padded_namespaces,
pretrained_files=pretrained_files,
only_include_pretrained_words=only_include_pretrained_words,
tokens_to_add=tokens_to_add,
min_pretrained_embeddings=min_pretrained_embeddings)
示例2: from_params
# 需要导入模块: from allennlp.common import Params [as 别名]
# 或者: from allennlp.common.Params import pop [as 别名]
def from_params(cls, vocab: Vocabulary, params: Params) -> 'ElmoTokenEmbedder': # type: ignore
# pylint: disable=arguments-differ
params.add_file_to_archive('options_file')
params.add_file_to_archive('weight_file')
options_file = params.pop('options_file')
weight_file = params.pop('weight_file')
requires_grad = params.pop('requires_grad', False)
do_layer_norm = params.pop_bool('do_layer_norm', False)
dropout = params.pop_float("dropout", 0.5)
namespace_to_cache = params.pop("namespace_to_cache", None)
if namespace_to_cache is not None:
vocab_to_cache = list(vocab.get_token_to_index_vocabulary(namespace_to_cache).keys())
else:
vocab_to_cache = None
projection_dim = params.pop_int("projection_dim", None)
scalar_mix_parameters = params.pop('scalar_mix_parameters', None)
params.assert_empty(cls.__name__)
return cls(options_file=options_file,
weight_file=weight_file,
do_layer_norm=do_layer_norm,
dropout=dropout,
requires_grad=requires_grad,
projection_dim=projection_dim,
vocab_to_cache=vocab_to_cache,
scalar_mix_parameters=scalar_mix_parameters)
示例3: datasets_from_params
# 需要导入模块: from allennlp.common import Params [as 别名]
# 或者: from allennlp.common.Params import pop [as 别名]
def datasets_from_params(params: Params) -> Dict[str, Iterable[Instance]]:
"""
Load all the datasets specified by the config.
"""
dataset_reader = DatasetReader.from_params(params.pop('dataset_reader'))
validation_dataset_reader_params = params.pop("validation_dataset_reader", None)
validation_and_test_dataset_reader: DatasetReader = dataset_reader
if validation_dataset_reader_params is not None:
logger.info("Using a separate dataset reader to load validation and test data.")
validation_and_test_dataset_reader = DatasetReader.from_params(validation_dataset_reader_params)
train_data_path = params.pop('train_data_path')
logger.info("Reading training data from %s", train_data_path)
train_data = dataset_reader.read(train_data_path)
datasets: Dict[str, Iterable[Instance]] = {"train": train_data}
validation_data_path = params.pop('validation_data_path', None)
if validation_data_path is not None:
logger.info("Reading validation data from %s", validation_data_path)
validation_data = validation_and_test_dataset_reader.read(validation_data_path)
datasets["validation"] = validation_data
test_data_path = params.pop("test_data_path", None)
if test_data_path is not None:
logger.info("Reading test data from %s", test_data_path)
test_data = validation_and_test_dataset_reader.read(test_data_path)
datasets["test"] = test_data
return datasets
示例4: from_params
# 需要导入模块: from allennlp.common import Params [as 别名]
# 或者: from allennlp.common.Params import pop [as 别名]
def from_params(cls, params: Params) -> 'SrlReader':
token_indexers = TokenIndexer.dict_from_params(params.pop('token_indexers', {}))
domain_identifier = params.pop("domain_identifier", None)
lazy = params.pop('lazy', False)
params.assert_empty(cls.__name__)
return SrlReader(token_indexers=token_indexers,
domain_identifier=domain_identifier,
lazy=lazy)
示例5: from_params
# 需要导入模块: from allennlp.common import Params [as 别名]
# 或者: from allennlp.common.Params import pop [as 别名]
def from_params(cls, params: Params) -> 'B':
params.add_file_to_archive("filename")
filename = params.pop("filename")
c_params = params.pop("c")
c = C.from_params(c_params)
return cls(filename, c)
示例6: from_params
# 需要导入模块: from allennlp.common import Params [as 别名]
# 或者: from allennlp.common.Params import pop [as 别名]
def from_params(cls, params: Params) -> 'SnliReader':
tokenizer = Tokenizer.from_params(params.pop('tokenizer', {}))
token_indexers = TokenIndexer.dict_from_params(params.pop('token_indexers', {}))
lazy = params.pop('lazy', False)
params.assert_empty(cls.__name__)
return SnliReader(tokenizer=tokenizer,
token_indexers=token_indexers,
lazy=lazy)
示例7: from_params
# 需要导入模块: from allennlp.common import Params [as 别名]
# 或者: from allennlp.common.Params import pop [as 别名]
def from_params(cls, params: Params) -> 'PennTreeBankConstituencySpanDatasetReader':
token_indexers = TokenIndexer.dict_from_params(params.pop('token_indexers', {}))
use_pos_tags = params.pop('use_pos_tags', True)
lazy = params.pop('lazy', False)
params.assert_empty(cls.__name__)
return PennTreeBankConstituencySpanDatasetReader(token_indexers=token_indexers,
use_pos_tags=use_pos_tags,
lazy=lazy)
示例8: from_params
# 需要导入模块: from allennlp.common import Params [as 别名]
# 或者: from allennlp.common.Params import pop [as 别名]
def from_params(cls, vocab: Vocabulary, params: Params) -> 'ElmoTokenEmbedder':
params.add_file_to_archive('options_file')
params.add_file_to_archive('weight_file')
options_file = params.pop('options_file')
weight_file = params.pop('weight_file')
requires_grad = params.pop('requires_grad', False)
do_layer_norm = params.pop_bool('do_layer_norm', False)
dropout = params.pop_float("dropout", 0.5)
params.assert_empty(cls.__name__)
return cls(options_file, weight_file, do_layer_norm, dropout, requires_grad=requires_grad)
示例9: from_params
# 需要导入模块: from allennlp.common import Params [as 别名]
# 或者: from allennlp.common.Params import pop [as 别名]
def from_params(cls, params: Params) -> 'CharacterTokenizer':
byte_encoding = params.pop('byte_encoding', None)
lowercase_characters = params.pop('lowercase_characters', False)
start_tokens = params.pop('start_tokens', None)
end_tokens = params.pop('end_tokens', None)
params.assert_empty(cls.__name__)
return cls(byte_encoding=byte_encoding,
lowercase_characters=lowercase_characters,
start_tokens=start_tokens,
end_tokens=end_tokens)
示例10: from_params
# 需要导入模块: from allennlp.common import Params [as 别名]
# 或者: from allennlp.common.Params import pop [as 别名]
def from_params(cls, params: Params) -> 'LanguageModelingReader':
tokens_per_instance = params.pop_int('tokens_per_instance', None)
tokenizer = Tokenizer.from_params(params.pop('tokenizer', {}))
token_indexers = TokenIndexer.dict_from_params(params.pop('token_indexers', {}))
lazy = params.pop('lazy', False)
params.assert_empty(cls.__name__)
return LanguageModelingReader(tokens_per_instance=tokens_per_instance,
tokenizer=tokenizer,
token_indexers=token_indexers,
lazy=lazy)
示例11: from_params
# 需要导入模块: from allennlp.common import Params [as 别名]
# 或者: from allennlp.common.Params import pop [as 别名]
def from_params(cls, params: Params) -> 'Conll2003DatasetReader':
token_indexers = TokenIndexer.dict_from_params(params.pop('token_indexers', {}))
tag_label = params.pop('tag_label', None)
feature_labels = params.pop('feature_labels', ())
lazy = params.pop('lazy', False)
params.assert_empty(cls.__name__)
return Conll2003DatasetReader(token_indexers=token_indexers,
tag_label=tag_label,
feature_labels=feature_labels,
lazy=lazy)
示例12: from_params
# 需要导入模块: from allennlp.common import Params [as 别名]
# 或者: from allennlp.common.Params import pop [as 别名]
def from_params(cls, params: Params) -> 'SequenceTaggingDatasetReader':
token_indexers = TokenIndexer.dict_from_params(params.pop('token_indexers', {}))
word_tag_delimiter = params.pop("word_tag_delimiter", DEFAULT_WORD_TAG_DELIMITER)
token_delimiter = params.pop("token_delimiter", None)
lazy = params.pop('lazy', False)
params.assert_empty(cls.__name__)
return SequenceTaggingDatasetReader(token_indexers=token_indexers,
word_tag_delimiter=word_tag_delimiter,
token_delimiter=token_delimiter,
lazy=lazy)
示例13: from_params
# 需要导入模块: from allennlp.common import Params [as 别名]
# 或者: from allennlp.common.Params import pop [as 别名]
def from_params(cls, params: Params) -> 'LinearSimilarity':
tensor_1_dim = params.pop_int("tensor_1_dim")
tensor_2_dim = params.pop_int("tensor_2_dim")
combination = params.pop("combination", "x,y")
activation = Activation.by_name(params.pop("activation", "linear"))()
params.assert_empty(cls.__name__)
return cls(tensor_1_dim=tensor_1_dim,
tensor_2_dim=tensor_2_dim,
combination=combination,
activation=activation)
示例14: from_params
# 需要导入模块: from allennlp.common import Params [as 别名]
# 或者: from allennlp.common.Params import pop [as 别名]
def from_params(cls, params: Params) -> 'StanfordSentimentTreeBankDatasetReader':
token_indexers = TokenIndexer.dict_from_params(params.pop('token_indexers', {}))
use_subtrees = params.pop('use_subtrees', False)
granularity = params.pop_choice('granularity', ["5-class", "3-class", "2-class"], True)
lazy = params.pop('lazy', False)
params.assert_empty(cls.__name__)
return StanfordSentimentTreeBankDatasetReader(
token_indexers=token_indexers,
use_subtrees=use_subtrees,
granularity=granularity,
lazy=lazy)
示例15: from_params
# 需要导入模块: from allennlp.common import Params [as 别名]
# 或者: from allennlp.common.Params import pop [as 别名]
def from_params(cls, vocab: Vocabulary, params: Params) -> 'TokenCharactersEncoder': # type: ignore
# pylint: disable=arguments-differ
embedding_params: Params = params.pop("embedding")
# Embedding.from_params() uses "tokens" as the default namespace, but we need to change
# that to be "token_characters" by default.
embedding_params.setdefault("vocab_namespace", "token_characters")
embedding = Embedding.from_params(vocab, embedding_params)
encoder_params: Params = params.pop("encoder")
encoder = Seq2VecEncoder.from_params(encoder_params)
dropout = params.pop_float("dropout", 0.0)
params.assert_empty(cls.__name__)
return cls(embedding, encoder, dropout)