当前位置: 首页>>代码示例>>Python>>正文


Python Params.as_flat_dict方法代码示例

本文整理汇总了Python中allennlp.common.Params.as_flat_dict方法的典型用法代码示例。如果您正苦于以下问题:Python Params.as_flat_dict方法的具体用法?Python Params.as_flat_dict怎么用?Python Params.as_flat_dict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在allennlp.common.Params的用法示例。


在下文中一共展示了Params.as_flat_dict方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: create_serialization_dir

# 需要导入模块: from allennlp.common import Params [as 别名]
# 或者: from allennlp.common.Params import as_flat_dict [as 别名]
def create_serialization_dir(params: Params, serialization_dir: str, recover: bool) -> None:
    """
    This function creates the serialization directory if it doesn't exist.  If it already exists,
    then it verifies that we're recovering from a training with an identical configuration.

    Parameters
    ----------
    params: ``Params``
        A parameter object specifying an AllenNLP Experiment.
    serialization_dir: ``str``
        The directory in which to save results and logs.
    recover: ``bool``
        If ``True``, we will try to recover from an existing serialization directory, and crash if
        the directory doesn't exist, or doesn't match the configuration we're given.
    """
    if os.path.exists(serialization_dir):
        if serialization_dir == '/output':
            # Special-casing the beaker output directory, which will already exist when training
            # starts.
            return
        if not recover:
            raise ConfigurationError(f"Serialization directory ({serialization_dir}) already exists.  "
                                     f"Specify --recover to recover training from existing output.")

        logger.info(f"Recovering from prior training at {serialization_dir}.")

        recovered_config_file = os.path.join(serialization_dir, CONFIG_NAME)
        if not os.path.exists(recovered_config_file):
            raise ConfigurationError("The serialization directory already exists but doesn't "
                                     "contain a config.json. You probably gave the wrong directory.")
        else:
            loaded_params = Params.from_file(recovered_config_file)

            # Check whether any of the training configuration differs from the configuration we are
            # resuming.  If so, warn the user that training may fail.
            fail = False
            flat_params = params.as_flat_dict()
            flat_loaded = loaded_params.as_flat_dict()
            for key in flat_params.keys() - flat_loaded.keys():
                logger.error(f"Key '{key}' found in training configuration but not in the serialization "
                             f"directory we're recovering from.")
                fail = True
            for key in flat_loaded.keys() - flat_params.keys():
                logger.error(f"Key '{key}' found in the serialization directory we're recovering from "
                             f"but not in the training config.")
                fail = True
            for key in flat_params.keys():
                if flat_params.get(key, None) != flat_loaded.get(key, None):
                    logger.error(f"Value for '{key}' in training configuration does not match that the value in "
                                 f"the serialization directory we're recovering from: "
                                 f"{flat_params[key]} != {flat_loaded[key]}")
                    fail = True
            if fail:
                raise ConfigurationError("Training configuration does not match the configuration we're "
                                         "recovering from.")
    else:
        if recover:
            raise ConfigurationError(f"--recover specified but serialization_dir ({serialization_dir}) "
                                     "does not exist.  There is nothing to recover from.")
        os.makedirs(serialization_dir)
开发者ID:Jordan-Sauchuk,项目名称:allennlp,代码行数:62,代码来源:train.py


注:本文中的allennlp.common.Params.as_flat_dict方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。