本文整理汇总了Python中Stoner.Data.title方法的典型用法代码示例。如果您正苦于以下问题:Python Data.title方法的具体用法?Python Data.title怎么用?Python Data.title使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Stoner.Data
的用法示例。
在下文中一共展示了Data.title方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: Data
# 需要导入模块: from Stoner import Data [as 别名]
# 或者: from Stoner.Data import title [as 别名]
"""Add an inset to a plot."""
from Stoner import Data
p = Data("sample.txt", setas="xy")
p.plot()
p.inset(loc=1, width="50%", height="50%")
p.setas = "x.y"
p.plot()
p.title = "" # Turn off the inset title
示例2: linspace
# 需要导入模块: from Stoner import Data [as 别名]
# 或者: from Stoner.Data import title [as 别名]
import Stoner.Fit as SF
from numpy import linspace, ones_like
from numpy.random import normal
from copy import deepcopy
T = linspace(4.2, 300, 101)
params = [265, 65, 1.0, 5]
params2 = deepcopy(params)
G = SF.blochGrueneisen(T, *params) + normal(size=len(T), scale=5e-5)
dG = ones_like(T) * 5e-5
d = Data(T, G, dG, setas="xye", column_headers=["Temperature (K)", "Resistivity", "dR"])
d.curve_fit(SF.blochGrueneisen, p0=params, result=True, header="curve_fit")
d.setas = "xy"
d.lmfit(SF.BlochGrueneisen, p0=params2, result=True, header="lmfit")
d.setas = "xyeyy"
d.plot(fmt=["r.", "b-", "g-"])
d.annotate_fit(SF.blochGrueneisen, x=0.65, y=0.35, fontdict={"size": "x-small"})
d.annotate_fit(
SF.BlochGrueneisen,
x=0.65,
y=0.05,
fontdict={"size": "x-small"},
prefix="BlochGrueneisen",
)
d.title = "Bloch-Grueneisen Fit"
d.tight_layout()
示例3:
# 需要导入模块: from Stoner import Data [as 别名]
# 或者: from Stoner.Data import title [as 别名]
d.show()
#Now convert the angle to sin^2
t.apply(lambda x: np.sin(np.radians(x[0]/2.0))**2, 0,header=r"$sin^2\theta$")
# Now create the m^2 order
m=np.arange(len(t))+fringe_offset
m=m**2
#And add it to t
t.add_column(m, column_header='$m^2$')
#Now we can it a straight line
t.setas="x..y"
fit=t.lmfit(Linear,result=True,replace=False,header="Fit")
g=t["LinearModel:slope"]
gerr=t["LinearModel:slope err"]/g
g=np.sqrt(1.0/g)
gerr/=2.0
l=float(d['Lambda'])
th=l/(2*g)
therr=th*(gerr)
t.inset(loc="top right",width=0.5,height=0.4)
t.plot_xy(r"Fit",r"$sin^2\theta$", 'b-',label="Fit")
t.plot_xy(r"$m^2$",r"$sin^2\theta$", 'ro',label="Peak Position")
t.xlabel="Fringe $m^2$"
t.ylabel=r"$sin^2\theta$"
t.title=""
t.legend(loc="upper left")
t.draw()
pyplot.sca(t.axes[0])
# Get the wavelength from the metadata
# Calculate thickness and report
pyplot.text (0.05,0.05, "Thickness is: {} $\AA$".format(format_error(th,therr,latex=True)), transform=main_fig.axes[0].transAxes)
示例4: zip
# 需要导入模块: from Stoner import Data [as 别名]
# 或者: from Stoner.Data import title [as 别名]
d.curve_fit(SF.bdr, p0=[2.5, 3.2, 0.3, 15.0, 1.0], result=True, header="curve_fit")
d.setas = "xyey"
d.plot(fmt=["r.", "b-"])
d.annotate_fit(
SF.bdr, x=0.6, y=0.05, prefix="bdr", fontdict={"size": "x-small", "color": "blue"}
)
# lmfit
d.setas = "xy"
fit = SF.BDR(missing="drop")
p0 = fit.guess(I, x=V)
for p, v, mi, mx in zip(
["A", "phi", "dphi", "d", "mass"],
[2.500, 3.2, 0.3, 15.0, 1.0],
[0.100, 1.0, 0.05, 5.0, 0.5],
[10, 10.0, 2.0, 30.0, 5.0],
):
p0[p].value = v
p0[p].bounds = [mi, mx]
d.lmfit(fit, p0=p0, result=True, header="lmfit")
d.setas = "x...y"
d.plot(fmt="g-")
d.annotate_fit(
fit, x=0.2, y=0.05, prefix="BDR", fontdict={"size": "x-small", "color": "green"}
)
d.ylabel = "Current"
d.title = "BDR Model test"
d.tight_layout()
示例5:
# 需要导入模块: from Stoner import Data [as 别名]
# 或者: from Stoner.Data import title [as 别名]
ODRModel,
result=True,
header="ODR-Fit",
residuals=True,
output="report",
prefix="ODRModel",
)
# Reset labels
d.labels = []
# Make nice two panel plot layout
ax = d.subplot2grid((3, 1), (2, 0))
d.setas = "x..y"
d.plot(fmt="g+", label="Fit residuals")
d.setas = "x....y"
d.plot(fmt="b+", label="ODRModel Residuals")
d.title = ""
ax = d.subplot2grid((3, 1), (0, 0), rowspan=2)
d.setas = "xyy.y"
d.plot(fmt=["ro", "g-", "b-"])
d.xticklabels = [[]]
d.ax_xlabel = ""
# Annotate plot with fitting parameters
d.annotate_fit(PowerLaw, x=0.1, y=0.25, fontdict={"size": "x-small"})
d.annotate_fit(
ODRModel, x=0.65, y=0.15, fontdict={"size": "x-small"}, prefix="ODRModel"
)
d.title = u"curve_fit with models"
示例6:
# 需要导入模块: from Stoner import Data [as 别名]
# 或者: from Stoner.Data import title [as 别名]
d.setas = "xy"
d.curve_fit(SF.quadratic, result=True, header="Curve-fit")
d.setas = "x...y"
d.plot(fmt="b-", label="curve-fit")
d.annotate_fit(
SF.quadratic,
prefix="quadratic",
x=0.2,
y=0.65,
fontdict={"size": "x-small", "color": "blue"},
)
d.setas = "xy"
fit = SF.Quadratic()
p0 = fit.guess(y, x=x)
d.lmfit(SF.Quadratic, p0=p0, result=True, header="lmfit")
d.setas = "x...y"
d.plot(fmt="g-", label="lmfit")
d.annotate_fit(
SF.Quadratic,
prefix="Quadratic",
x=0.65,
y=0.65,
fontdict={"size": "x-small", "color": "green"},
)
d.title = "Qudratic Fitting"
plt.legend(loc=4)
示例7:
# 需要导入模块: from Stoner import Data [as 别名]
# 或者: from Stoner.Data import title [as 别名]
d.curve_fit(SF.kittelEquation, p0=copy(params), result=True, header="curve_fit")
fit = SF.KittelEquation()
p0 = fit.guess(G, x=B)
d.lmfit(fit, p0=p0, result=True, header="lmfit")
d.setas = "xyeyy"
d.plot(fmt=["r.", "b-", "g-"])
d.annotate_fit(
SF.kittelEquation,
x=0.5,
y=0.25,
fontdict={"size": "x-small", "color": "blue"},
mode="eng",
)
d.annotate_fit(
SF.KittelEquation,
x=0.5,
y=0.05,
fontdict={"size": "x-small", "color": "green"},
prefix="KittelEquation",
mode="eng",
)
d.title = "Kittel Fit"
d.fig.gca().xaxis.set_major_formatter(TexEngFormatter())
d.fig.gca().yaxis.set_major_formatter(TexEngFormatter())
d.tight_layout()
示例8: zip
# 需要导入模块: from Stoner import Data [as 别名]
# 或者: from Stoner.Data import title [as 别名]
SF.fowlerNordheim,
x=0.2,
y=0.6,
prefix="fowlerNordheim",
fontdict={"size": "x-small", "color": "blue"},
)
d.setas = "xye"
fit = SF.FowlerNordheim()
p0 = [2500, 5.2, 15.0]
p0 = fit.guess(I, x=V)
for p, v, mi, mx in zip(
["A", "phi", "d"], [2500, 3.2, 15.0], [100, 1, 5], [1e4, 20.0, 30.0]
):
p0[p].value = v
p0[p].bounds = [mi, mx]
d.lmfit(SF.FowlerNordheim, p0=p0, result=True, header="lmfit")
d.setas = "x...y"
d.plot(fmt="g-")
d.annotate_fit(
fit,
x=0.2,
y=0.2,
prefix="FowlerNordheim",
fontdict={"size": "x-small", "color": "green"},
)
d.ylabel = "Current"
d.title = "Fowler-Nordheim Model test"
d.tight_layout()
示例9: Data
# 需要导入模块: from Stoner import Data [as 别名]
# 或者: from Stoner.Data import title [as 别名]
"""Scale data to stitch it together."""
from Stoner import Data
from Stoner.Util import format_error
import matplotlib.pyplot as plt
# Load and plot two sets of data
s1 = Data("Stitch-scan1.txt", setas="xy")
s2 = Data("Stitch-scan2.txt", setas="xy")
s1.plot(label="Set 1")
s2.fig = s1.fig
s2.plot(label="Set 2")
# Stitch scan 2 onto scan 1
s2.stitch(s1)
s2.plot(label="Stictched")
s2.title = "Stictching Example"
# Tidy up the plot by adding annotation fo the stirching co-efficients
labels = ["A", "B", "C"]
txt = []
lead = r"$x'\rightarrow x+A$" + "\n" + r"$y'=\rightarrow By+C$" + "\n"
for l, v, e in zip(
labels, s2["Stitching Coefficients"], s2["Stitching Coeffient Errors"]
):
txt.append(format_error(v, e, latex=True, prefix=l + "="))
plt.text(0.7, 0.65, lead + "\n".join(txt), fontdict={"size": "x-small"})
plt.draw()
示例10:
# 需要导入模块: from Stoner import Data [as 别名]
# 或者: from Stoner.Data import title [as 别名]
d.lmfit(fit, result=True, header="lmfit")
d.setas = "x...y"
d.plot(fmt="g-")
d.annotate_fit(
SF.Arrhenius,
x=0.5,
y=0.35,
prefix="Arrhenius",
mode="eng",
fontdict={"size": "x-small", "color": "green"},
)
d.setas = "xye"
res = d.odr(SF.Arrhenius, result=True, header="odr", prefix="ODR")
d.setas = "x....y"
d.plot(fmt="m-")
d.annotate_fit(
SF.Arrhenius,
x=0.5,
y=0.2,
prefix="ODR",
mode="eng",
fontdict={"size": "x-small", "color": "magenta"},
)
d.title = "Arrhenius Test Fit"
d.ylabel("Rate")
d.xlabel("Temperature (K)")
d.yscale("log")
示例11: gmean
# 需要导入模块: from Stoner import Data [as 别名]
# 或者: from Stoner.Data import title [as 别名]
result.data[:, c] = (resfldr[1][:, c] + resfldr[0][:, c]) / 2.0
for c in [1, 3, 5, 7]:
result.data[:, c] = gmean((resfldr[0][:, c], resfldr[1][:, c]), axis=0)
# Doing the Kittel fit with an orthogonal distance regression as we have x errors not y errors
p0 = [2, 200e3, 10e3] # Some sensible guesses
result.lmfit(
Inverse_Kittel, p0=p0, result=True, header="Kittel Fit", output="report"
)
result.setas[-1] = "y"
result.template.yformatter = TexEngFormatter
result.template.xformatter = TexEngFormatter
result.labels = None
result.figure(figsize=(6, 8))
result.subplot(211)
result.plot(fmt=["r.", "b-"])
result.annotate_fit(Inverse_Kittel, x=7e9, y=1e5, fontdict={"size": 8})
result.ylabel = "$H_{res} \\mathrm{(Am^{-1})}$"
result.title = "Inverse Kittel Fit"
# Get alpha
result.subplot(212)
result.setas(y="Delta_H", e="Delta_H.stderr", x="Freq")
result.y /= mu_0
result.e /= mu_0
result.lmfit(Linear, result=True, header="Width", output="report")
result.setas[-1] = "y"
result.plot(fmt=["r.", "b-"])
result.annotate_fit(Linear, x=5.5e9, y=2.8e3, fontdict={"size": 8})
示例12: Data
# 需要导入模块: from Stoner import Data [as 别名]
# 或者: from Stoner.Data import title [as 别名]
d = Data(V, I, dI, setas="xye", column_headers=["Bias", "Current", "Noise"])
d.curve_fit(SF.simmons, p0=[2500, 5.2, 15.0], result=True, header="curve_fit")
d.setas = "xyey"
d.plot(fmt=["r.", "b-"])
d.annotate_fit(
SF.simmons,
x=0.25,
y=0.25,
prefix="simmons",
fontdict={"size": "x-small", "color": "blue"},
)
d.setas = "xye"
fit = SF.Simmons()
p0 = [2500, 5.2, 15.0]
d.lmfit(SF.Simmons, p0=p0, result=True, header="lmfit")
d.setas = "x...y"
d.plot(fmt="g-")
d.annotate_fit(
fit,
x=0.65,
y=0.25,
prefix="Simmons",
fontdict={"size": "x-small", "color": "green"},
)
d.ylabel = "Current"
d.title = "Simmons Model test"
d.tight_layout()
示例13: exp
# 需要导入模块: from Stoner import Data [as 别名]
# 或者: from Stoner.Data import title [as 别名]
d.plot(fmt="ro") # plot our data
func = lambda x, A, B, C: A + B * exp(-x / C)
# Do the fitting and plot the result
fit = d.odr(
func, result=True, header="Fit", A=1, B=1, C=1, prefix="Model", residuals=True
)
# Reset labels
d.labels = []
# Make nice two panel plot layout
ax = d.subplot2grid((3, 1), (2, 0))
d.setas = "x..y"
d.plot(fmt="g+")
d.title = ""
ax = d.subplot2grid((3, 1), (0, 0), rowspan=2)
d.setas = "xyy"
d.plot(fmt=["ro", "b-"])
d.xticklabels = [[]]
d.xlabel = ""
# Annotate plot with fitting parameters
d.annotate_fit(func, prefix="Model", x=0.7, y=0.3, fontdict={"size": "x-small"})
text = r"$y=A+Be^{-x/C}$" + "\n\n"
d.text(7.2, 3.9, text, fontdict={"size": "x-small"})
d.title = u"Orthogonal Distance Regression Fit"
示例14:
# 需要导入模块: from Stoner import Data [as 别名]
# 或者: from Stoner.Data import title [as 别名]
data.del_rows(isnan(data.y))
#Normalise data on y axis between +/- 1
data.normalise(base=(-1.,1.), replace=True)
#Swap x and y axes around so that R is x and T is y
data=~data
#Curve fit a straight line, using only the central 90% of the resistance transition
data.curve_fit(linear,bounds=lambda x,r:-threshold<x<threshold,result=True,p0=[7.0,0.0]) #result=True to record fit into metadata
#Plot the results
data.setas[-1]="y"
data.subplot(1,len(r_cols),i+1)
data.plot(fmt=["k.","r-"])
data.annotate_fit(linear,x=-1.,y=7.3c,fontsize="small")
data.title="Ramp {}".format(data[iterator][0])
row.extend([data["linear:intercept"],data["linear:intercept err"]])
data.tight_layout()
result+=np.array(row)
result.column_headers=["Ramp","Sample 4 R","dR","Sample 7 R","dR"]
result.setas="xyeye"
result.plot(fmt=["k.","r."])
示例15: guess_vals
# 需要导入模块: from Stoner import Data [as 别名]
# 或者: from Stoner.Data import title [as 别名]
@simple_model.guesser
def guess_vals(y, x=None):
"""Should guess parameter values really!"""
m = (y.max() - y.min()) / (x[y.argmax()] - x[y.argmin()])
c = x.mean() * m - y.mean() # return one value per parameter
return [m, c]
# Add a function to sry vonstraints on parameters (optional)
@simple_model.hinter
def hint_parameters():
"""Five some hints about the parameter."""
return {"m": {"max": 10.0, "min": 0.0}, "c": {"max": 5.0, "min": -5.0}}
# Create some x,y data
x = linspace(0, 10, 101)
y = 4.5 * x - 2.3 + normal(scale=0.4, size=len(x))
# Make The Data object
d = Data(x, y, setas="xy", column_headers=["X", "Y"])
# Do the fit
d.lmfit(simple_model, result=True)
# Plot the result
d.setas = "xyy"
d.plot(fmt=["r+", "b-"])
d.title = "Simple Model Fit"
d.annotate_fit(simple_model, x=0.05, y=0.5)