本文整理汇总了Python中Stoner.Data.setas[-1]方法的典型用法代码示例。如果您正苦于以下问题:Python Data.setas[-1]方法的具体用法?Python Data.setas[-1]怎么用?Python Data.setas[-1]使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Stoner.Data
的用法示例。
在下文中一共展示了Data.setas[-1]方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: LoadData
# 需要导入模块: from Stoner import Data [as 别名]
# 或者: from Stoner.Data import setas[-1] [as 别名]
def LoadData(self, data_item_number, filename):
"""LoadData(self, data_item_number, filename) --> none
Loads the data from filename into the data_item_number.
"""
try:
datafile=Data(str(filename),debug=True) # does all the hard work here
except Exception as e:
ShowWarningDialog(self.parent, 'Could not load the file: ' +\
filename + ' \nPlease check the format.\n\n Stoner.Data'\
+ ' gave the following error:\n' + str(e))
else:
# For the freak case of only one data point
try:
if datafile.setas.cols["axes"]==0:
self.x_col=datafile.find_col(self.x_col)
self.y_col=datafile.find_col(self.y_col)
self.e_col=datafile.find_col(self.e_col)
datafile.etsas(x=self.x_col,y=self.y_col,e=self.e_col)
else:
self.x_col=datafile.setas.cols["xcol"]
self.y_col=datafile.setas.cols["ycol"][0]
if len(datafile.setas.cols["yerr"])>0:
self.e_col=datafile.setas.cols["yerr"][0]
else:
datafile.add_column(np.ones(len(datafile)))
datafile.setas[-1]="e"
except Exception as e:
ShowWarningDialog(self.parent, 'The data file does not contain'\
+ 'all the columns specified in the opions\n'+e.message)
# Okay now we have showed a dialog lets bail out ...
return
# The data is set by the default Template.__init__ function, neat hu
# Know the loaded data goes into *_raw so that they are not
# changed by the transforms
datafile.y=np.where(datafile.y==0.0,1E-8,datafile.y)
self.data[data_item_number].x_raw = datafile.x
self.data[data_item_number].y_raw = datafile.y
self.data[data_item_number].error_raw = datafile.e
# Run the commands on the data - this also sets the x,y, error memebers
# of that data item.
self.data[data_item_number].run_command()
# Send an update that new data has been loaded
self.SendUpdateDataEvent()
示例2: enumerate
# 需要导入模块: from Stoner import Data [as 别名]
# 或者: from Stoner.Data import setas[-1] [as 别名]
data.figure(figsize=(8,4))
for i,r_col in enumerate(r_cols):
data.setas(x=t_col,y=r_col)
data.del_rows(isnan(data.y))
#Normalise data on y axis between +/- 1
data.normalise(base=(-1.,1.), replace=True)
#Swap x and y axes around so that R is x and T is y
data=~data
#Curve fit a straight line, using only the central 90% of the resistance transition
data.curve_fit(linear,bounds=lambda x,r:-threshold<x<threshold,result=True,p0=[7.0,0.0]) #result=True to record fit into metadata
#Plot the results
data.setas[-1]="y"
data.subplot(1,len(r_cols),i+1)
data.plot(fmt=["k.","r-"])
data.annotate_fit(linear,x=-1.,y=7.3c,fontsize="small")
data.title="Ramp {}".format(data[iterator][0])
row.extend([data["linear:intercept"],data["linear:intercept err"]])
data.tight_layout()
result+=np.array(row)
result.column_headers=["Ramp","Sample 4 R","dR","Sample 7 R","dR"]
result.setas="xyeye"
result.plot(fmt=["k.","r."])
示例3: gmean
# 需要导入模块: from Stoner import Data [as 别名]
# 或者: from Stoner.Data import setas[-1] [as 别名]
resfldr += result # Stash the results
# Merge the two field signs into a single file, taking care of the error columns too
result = resfldr[0].clone
for c in [0, 2, 4, 6, 8, 9, 10]:
result.data[:, c] = (resfldr[1][:, c] + resfldr[0][:, c]) / 2.0
for c in [1, 3, 5, 7]:
result.data[:, c] = gmean((resfldr[0][:, c], resfldr[1][:, c]), axis=0)
# Doing the Kittel fit with an orthogonal distance regression as we have x errors not y errors
p0 = [2, 200e3, 10e3] # Some sensible guesses
result.lmfit(
Inverse_Kittel, p0=p0, result=True, header="Kittel Fit", output="report"
)
result.setas[-1] = "y"
result.template.yformatter = TexEngFormatter
result.template.xformatter = TexEngFormatter
result.labels = None
result.figure(figsize=(6, 8))
result.subplot(211)
result.plot(fmt=["r.", "b-"])
result.annotate_fit(Inverse_Kittel, x=7e9, y=1e5, fontdict={"size": 8})
result.ylabel = "$H_{res} \\mathrm{(Am^{-1})}$"
result.title = "Inverse Kittel Fit"
# Get alpha
result.subplot(212)
result.setas(y="Delta_H", e="Delta_H.stderr", x="Freq")
result.y /= mu_0