本文整理汇总了Python中Model.Model类的典型用法代码示例。如果您正苦于以下问题:Python Model类的具体用法?Python Model怎么用?Python Model使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Model类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: update
def update(self, itemid, data):
assert(self.table_name != '')
if data.has_key('imagefile') and len(data.imagefile['value']) > 10:
data['itemtype'] = self.table_name
data.Imageid = new_image_id = Image().insert(data) # set Imageid for update
Image().setItemID(new_image_id, itemid)
Model.update(self,itemid,data)
示例2: runFull
def runFull():
nbrUserids = KNNSearch.Search([ 1.0 , -1.2, 1.0, 7.79 ], 2000)
# print "Neighbours\n"
# pprint.pprint(nbrUserids)
split = FeatureSet.featureExtract(nbrUserids)
# print "split\n"
# pprint.pprint(split)
# testData = getTestData()
# print "Test Data\n"
# pprint.pprint(testData);
#
# sys.exit(0)
featureSet = split[0][0]
interested = split[0][1]
notinterested = split[0][2]
z = [True] * len(featureSet[0])
w = [True] * len(featureSet[0])
C = 0.03
#C = 0.3
model = Model(compress=z, has_none=w, C=C)
model.fit(featureSet, interested)
testData = getTestData()
result = runModel(model, testData)
print result
示例3: __init__
def __init__(self, amt, radius):
Model.__init__(self)
self.source = vtk.vtkAppendPolyData()
for i in range(amt):
opX = 1.0
opY = 1.0
opZ = 1.0
if random() > 0.5:
opX *= -1.0
if random() > 0.5:
opY *= -1.0
if random() > 0.5:
opZ *= -1.0
sRad = 0.25 + ( random() * 0.25 )
x = float(random() * radius) * opX
y = float(random() * radius) * opY
z = float(random() * radius) * opZ
s = vtk.vtkSphereSource()
s.SetCenter(x,y,z)
s.SetRadius(float(sRad))
s.Update()
self.source.AddInput(s.GetOutput())
#add center
s = vtk.vtkSphereSource()
s.SetCenter(0.0, 0.0, 0.0)
s.SetRadius(0.5)
s.Update()
self.source.AddInput(s.GetOutput())
self.Update()
示例4: __init__
def __init__(self, ID, params):
Model.__init__(self, ID, params)
h2o.init()
datadir = os.path.expanduser('~') +'/FSA/data/'
trainingFile = datadir + params[1][0]
valFile = datadir + params[1][1]
testingFile = datadir + params[1][2]
self.trainData = h2o.import_file(path=trainingFile)
self.valData = h2o.import_file(path=valFile)
#self.valData = self.trainData
self.testData = h2o.import_file(path=testingFile)
# print self.trainData.col_names()
# drop the invalid columns
self.trainData = self.trainData.drop("away_score").drop("home_score")
self.valData = self.valData.drop("away_score").drop("home_score")
self.testData = self.testData.drop("away_score").drop("home_score")
self.params = params
if self.params[0] == False:
self.trainData = self.trainData.drop('spread')
# self.valData = self.valData.drop('spread')
self.testData = self.testData.drop('spread')
# for h2o, creating the model is the same as training the model so
# need to hold of here
self.model = None
示例5: insert
def insert(self,data):
if data.has_key('imagefile'):
assert(data.imagefile.has_key('filename') and data.imagefile.has_key('value'))
data.imagefile['filetype'] = data.imagefile['filename'].rpartition('.')[2].lower()
validated_msg = self._insertValidate(data)
# 如果validated_msg is not None, 则post的图片数据有错
if validated_msg is not None:
raise Exception(validated_msg)
# 插入数据
new_id = Model.insert(self,data)
file_path = '%s%d.%s' % (self._getSaveDir(data), new_id, data.imagefile['filetype'])
# 更新数据库中的uri字段
self._getDB().update('update '+self.table_name+' set uri=%s where '+self.table_name+'id=%s' ,('%s%d.%s' % (self._getUriBase(data), new_id, data.imagefile['filetype']) ,new_id))
# 创建文件夹
if not os.path.exists(file_path.rpartition('/')[0]):
os.mkdir(file_path.rpartition('/')[0])
# 保存图片
with open(file_path,'w') as f:
f.write(data.imagefile['value'])
# 压缩图片
if data.has_key('ifResize'):
pass
else:
self.resizeImage(file_path)
else:
new_id = Model.insert(self, data)
return new_id
示例6: __init__
def __init__(self, bactDensity, chemDensity, dt, lamda, d, e):
self.motility = d
self.chemSens = lamda * bactDensity/(1+e*bactDensity)
self.liveCycle = 0
self.chemProd = bactDensity
self.chemDegr = 1
Model.__init__(self, bactDensity, chemDensity, dt)
示例7: Controller
class Controller():
'''Main class for controlling the operations of the application'''
def __init__(self):
#Create a new Tkinter interface
self.root = Tk()
#Set an exit protocol
self.root.protocol("WM_DELETE_WINDOW", self.exitRoot)
#Create a model
self.model = Model()
self.model.loadConfig() #Load default configuration parameters
#self.view = View()
#Start timer thread
self.txTimer = TimerThread(self, "tmr")
#Create joystick interface
self.jsFrame = JoystickFrame(self.root)
self.joystick = self.jsFrame.getJSHandle()
self.statusBox = self.jsFrame.getTextHandle()
#Initialise a telnet rxtx thread for wireless communication
self.rxThread = RxTxThread(self,"rxtxthread", self.model.getHost(), self.model.getPort())
if (self.rxThread.getTN() == 0):
self.statusBox.setText('Could not establish a connection. Terminating...')
return
#Start Threads
self.rxThread.start()
self.txTimer.start()
self.statusBox.setText('Connected\n')
print self.rxThread.getRXText()
self.rxThread.checkConnection()
self.root.mainloop()
def processMessages(self, messages):
'''Displays received messages in a window box'''
for msg in messages:
self.statusBox.setText(msg + '\n')
def transmitControl(self):
'''Transmits the coordinates of the joystick if it it being actuated.
Not complete in interfacing.'''
if not self.joystick.isReleased(): #Joystick in use
spdL,spdR = self.joystick.getSpeeds() #Retrieve position as speeds
print spdL, spdR
if self.jsFrame.keyReady(): # WASD Control
keyChar = self.jsFrame.getJSKey() # Retrieve valid keypresses
self.statusBox.setText("Pressed: "+keyChar+"\n")
self.rxThread.txCmd(keyChar) #Transmit typed character
def exitRoot(self):
'''Protocol for exiting main application'''
self.rxThread.txCmd('!') #Stop robot
self.txTimer.pause(True) #Stop timer
self.rxThread.stop() #Stop thread
self.root.destroy()
示例8: __init__
def __init__(self, controller):
from collections import OrderedDict
Model.__init__(self, controller)
self._currentPlotSet = None
self._plotSets = OrderedDict() # key: plotSet ID, value: instance of XYPlotSetModel. We use an OrderedDict so that
# when removing elemetns, we can easily re-select the last-but-one.
self._lockRepaint = False # if True, repaint routines are blocked.
self._plotSetsRepaint = set() # plot waiting for repaint/update while repaint is locked
示例9: View
class Controller:
""" a 'middleman' between the View (visual aspects) and the Model (information) of the application.
It ensures decoupling between both.
"""
def __init__(self, app):
# initialize the model and view
# * The model handles all the data, and signal-related operations
# * The view handles all the data visualization
self.model = Model()
self.view = View()
# subscribe to messages sent by the view
pub.subscribe(self.parse_file, "FILE PATH CHANGED")
pub.subscribe(self.reprocess_fft, "FFT CONTROLS CHANGED")
# subscribe to messages sent by the model
pub.subscribe(self.signal_changed, "SIGNAL CHANGED")
pub.subscribe(self.signal_changed, "FFT CHANGED")
self.view.Show()
def parse_file(self, message):
"""
Handles "FILE PATH CHANGED" messages, send by the View. It tells the model to parse a new file.
message.data should contain the path of the new file
"""
try:
self.model.parse_file(message.data)
except Exception as exception:
self.view.show_exception(
"Error reading file", "The following error happened while reading the file:\n%s" % str(exception)
)
def reprocess_fft(self, message):
"""
Handler "FFT CONTROLS CHANGED" messages from the View. It tells the model to re-process the fft.
message.data should contain the array [window, slices, max_peaks]
"""
self.model.reprocess_fft(*message.data)
def signal_changed(self, message):
"""
Handles "SIGNAL CHANGED" messages sent by the model. Tells the view to update itself.
message is ignored
"""
self.view.signal_changed(self.model)
def fft_changed(self, message):
"""
Handles "FFT CHANGED" messages sent by the model. Tells the view to update itself.
message is ignored
"""
self.view.fft_changed(self.model)
示例10: generateJson
def generateJson(self,outputDictionary,analyzeData,key):
inner_json_list = []
questions = analyzeData[key]
for question in questions:
answers = outputDictionary[question]
dict_of_answers = dict(Counter(answers))
DataModel = Model(key,question,dict_of_answers)
DataModelJson = DataModel.toJson()
inner_json_list.append(DataModelJson)
inner_json = json.dumps({'data':inner_json_list})
return inner_json
示例11: Controller
class Controller(object):
def __init__(self):
self.model = Model()
self.view = View()
def run(self):
name = self.view.welcome()
if name == 'Ken':
print(self.model.say_hello(name))
else:
print(self.model.say_bye())
示例12: __init__
def __init__(self,root='',database_path='data/',database_name='mydatabase.db'):
Model.__init__(self,root,database_path,database_name)
self.name = 'courses'
self.columns["name"] = 'TEXT'
self.columns["semester"] = 'TEXT'
self.columns["type"] = 'TEXT'
self.columns["lecture_group"] = 'TEXT'
self.columns["day"] = 'TEXT'
self.columns["start_time"] = 'TEXT'
self.columns["end_time"] = 'TEXT'
self.columns["venue"] = 'TEXT'
示例13: __reBuildViewTree
def __reBuildViewTree(self):
"""Creates a new Model using the current folder"""
self.view.filesTree.buttons.set_sensitive(False)
if len(self.folders) == 1:
self.model = Model([self.folders[0]], self.view.progressBar)
else:
self.model = Model(self.folders, self.view.progressBar, group=True)
self.saveCache()
self.__refreshViewTree()
self.view.vbox.remove(self.view.progressBar)
self.model.lastUpdate = time.time()
self.view.filesTree.buttons.set_sensitive(True)
示例14: __init__
class Controller:
def __init__(self):
self.model = Model()
self.view = View()
self.firstTime = True
self.result = 0.0
self.a = 0.0
self.b = 0.0
self.usePrev = 0
def run(self):
while True:
self.view.printMenu()
selection = self.view.inputSelection()
if selection <= 0:
continue
elif selection == 5:
self.view.terminate()
return
elif not self.firstTime:
if self.model.isNumber(self.result):
self.usePrev = self.view.usePrevious(self.result)
else:
self.usePrev = 0
else:
self.firstTime = False
if self.usePrev == 0:
# Enter both operands
self.a = self.view.oneOp(1)
self.b = self.view.oneOp(2)
elif self.usePrev == 1:
# Enter second operand
self.a = self.result
self.view.printOp(1, self.a)
self.b = self.view.oneOp(2)
elif self.usePrev == 2:
# Enter first operand
self.a = self.view.oneOp(1)
self.b = self.result
self.view.printOp(2, self.b)
else:
# ERROR: Should never reach this block
self.view.printInvalidArg()
continue
self.view.printCalc(selection, self.a, self.b)
self.result = self.model.calculate(selection, self.a, self.b)
self.view.printResult(self.result)
if self.view.anotherOp():
continue
else:
return
示例15: test1
def test1(transition_samples):
def momentum(current, previous, decay):
new = current + decay * previous
return new
w_init = [-1.3, -1.2, -1, -0.8, -0.8, -1.4, -1.5, -3.0, -2.0, -1.0, -0.3, -0.5, -8.0, -3.0]
# w_init /=np.linalg.norm(w_init)
steps = 10
diff = []
m = DiscModel()
model = Model(m, w_init)
initial_transition = model.transition_f
policy = caus_ent_backward(model.transition, model.reward_f, 3, steps, conv=0.1, z_states=None)
start_states = [400, 45, 65, 67, 87, 98, 12, 34, 54, 67, 54, 32, 34, 56, 80, 200, 100, 150]
# statistics = [generate_test_statistic(policy,model,start_state,steps) for start_state in start_states]
statistics, dt_states_base = generate_test_statistic(policy, model, start_states, steps)
model.w = [-1, -1.2, -1, -0.8, -0.8, -4.4, -2, -2.0, -3.0, -1.0, -2.3, -1.5, -4.0, -3.0]
# model.w =[-2.,-0.6,-4.,-4.,-3.,-5.,-2.,-0.5,-4.,-0.8,-4.,-3.,-5.]
# model.w /=np.linalg.norm(model.w)
model.buildRewardFunction()
if transition_samples != 1:
model.buildTransitionFunction(transition_samples, learn=False)
transition_diff = np.sum(np.absolute(initial_transition - model.transition_f))
initial_transition = 0
gamma = 0.04
iterations = 110
for i in range(iterations):
policy2 = caus_ent_backward(model.transition, model.reward_f, 1, steps, conv=0.1, z_states=None)
# gradients = np.array([(statistics[j] - generate_test_statistic(policy,model,start_state,steps)) for j,start_state in enumerate(start_states)])
state_freq, dt_states_train = generate_test_statistic(policy2, model, start_states, steps)
gradients = statistics - state_freq
if i == 0:
image = np.absolute(dt_states_train - dt_states_base)
gradient = gradients
else:
gradient = momentum(gradients, prev, 0.8)
image = np.append(image, np.absolute(dt_states_train - dt_states_base), axis=1)
model.w = model.w * np.exp(-gamma * gradient)
# model.w /=np.linalg.norm(model.w)
prev = gradient
gamma = gamma * 1.04
model.buildRewardFunction()
print "Iteration", i
print "Gradient", gradient
print "New Weights", model.w
print "Real weights", w_init
print "Policy Difference", np.sum(np.sum(np.absolute(policy - policy2)))
diff.append(np.sum(np.sum(np.absolute(policy - policy2))))
policy_diff = np.sum(np.sum(np.absolute(policy - policy2)))
w_diff = np.absolute(w_init - model.w)
grad = np.sum(np.absolute(gradient))
return image, diff, grad, w_diff, transition_diff