本文整理汇总了Python中LOTlib.Hypotheses.LOTHypothesis.LOTHypothesis类的典型用法代码示例。如果您正苦于以下问题:Python LOTHypothesis类的具体用法?Python LOTHypothesis怎么用?Python LOTHypothesis使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了LOTHypothesis类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
def __init__(self, constant_sd=1.0, fit_only_once=True, **kwargs):
"""
:param constant_sd: The SD of our constants in the prior
:param fit_only_once: Do we fit multiple times or just take the first?
"""
LOTHypothesis.__init__(self, grammar, display='lambda x,'+','.join(CONSTANT_NAMES)+": %s", **kwargs)
self.constant_sd=constant_sd # also the prior SD
self.parameters = self.sample_constants()
self.fit_only_once = fit_only_once
示例2: __call__
def __call__(self, *vals):
"""
Must overwrite call in order to include the constants
"""
vals = list(vals)
vals.extend(self.CONSTANT_VALUES)
return LOTHypothesis.__call__(self, *vals)
示例3: __call__
def __call__(self, *vals):
"""
Must overwrite call in order to include the constants
"""
vals = list(vals)
vals.extend(self.parameters)
return LOTHypothesis.__call__(self, *vals)
示例4: __call__
def __call__(self, *args, **kwargs):
# we have to mod this to insert the spaces since they aren't part of cons above
ret = LOTHypothesis.__call__(self, *args, **kwargs)
out = dict()
for k, v in ret.items():
out[" ".join(k)] = v
return out
示例5: prior_sample
def prior_sample(h0, data, N):
"""
Just use the grammar and returntype of h0 to sample from the prior
NOTE: Only implemented for LOTHypothesis
"""
assert isinstance(h0, LOTHypothesis)
# extract from the grammar
G = h0.grammar
rt = h0.value.returntype
for i in xrange(N):
if LOTlib.SIG_INTERRUPTED: break
h = LOTHypothesis(G, start=rt)
h.compute_posterior(data)
yield h
示例6: __call__
def __call__(self, *args, **kwargs):
if self.value_set is None:
value_set = LOTHypothesis.__call__(self)
# Restrict our concept to being within our domain; also handle 'None' call values
if isinstance(value_set, set):
value_set = [x for x in value_set if x <= self.domain]
else:
value_set = []
self.value_set = value_set
return self.value_set
示例7: __call__
def __call__(self, *args, **kwargs):
# Sometimes self.value has too many nodes
try:
value_set = LOTHypothesis.__call__(self)
except TooBigException:
value_set = set()
if isinstance(value_set, set):
# Restrict our concept to being within our domain
value_set = [x for x in value_set if (1 <= x <= self.domain)]
else:
# Sometimes self() returns None
value_set = set()
return value_set
示例8: __init__
def __init__(self, grammar, alpha=0.9, domain=100, **kwargs):
LOTHypothesis.__init__(self, grammar, args=[], **kwargs)
self.alpha = alpha
self.domain = domain
示例9: __init__
def __init__(self, *args, **kwargs ):
LOTHypothesis.__init__(self, grammar, display='lambda x,y: %s', **kwargs)
super(CRHypothesis, self).__init__(*args, **kwargs)
示例10: __init__
def __init__(self, ALPHA=0.9, **kwargs):
LOTHypothesis.__init__(self, grammar, **kwargs)
self.ALPHA = ALPHA
示例11: __init__
def __init__(self, grammar=grammar, **kwargs):
LOTHypothesis.__init__(self, grammar, display='lambda C : %s', maxnodes=200, **kwargs)
# self.outlier = -100 # for MultinomialLikelihoodLog
self.alphabet_size = len(TERMINALS)
示例12: __init__
def __init__(self, value=None, alpha=0.99, baserate=0.5):
LOTHypothesis.__init__(self, grammar, value=value, display='lambda S, x: %s', alpha=alpha, baserate=baserate)
示例13: __init__
def __init__(self, **kwargs):
LOTHypothesis.__init__(self, grammar, **kwargs)
示例14: __init__
def __init__(self, **kwargs ):
LOTHypothesis.__init__(self, grammar, args=['x', 'y'], **kwargs)
示例15: compute_prior
def compute_prior(self):
# Add together the LOT prior and the constant prior, here just a gaussian
return LOTHypothesis.compute_prior(self) +\
sum(map(lambda x: normlogpdf(x,0.0,self.constant_sd), self.parameters))