当前位置: 首页>>代码示例>>Python>>正文


Python Image.write_decomposition方法代码示例

本文整理汇总了Python中Image.Image.write_decomposition方法的典型用法代码示例。如果您正苦于以下问题:Python Image.write_decomposition方法的具体用法?Python Image.write_decomposition怎么用?Python Image.write_decomposition使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Image.Image的用法示例。


在下文中一共展示了Image.write_decomposition方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: len

# 需要导入模块: from Image import Image [as 别名]
# 或者: from Image.Image import write_decomposition [as 别名]
import numpy as np
from Image import Image
from sklearn.decomposition import PCA
import scipy.io as sio
import nibabel as nib
import os.path

parser = argparse.ArgumentParser(description='fMRI analysis pipeline for matrix decomposition')
parser.add_argument('-img', metavar='image', type=str, nargs='+', required=True)
parser.add_argument('-mask', metavar='mask', type=str, nargs='+', required=True)
parser.add_argument('-n', metavar='n_components', type=int, required=True)
parser.add_argument('-fwhm', metavar='fwhm', type=int, required=True)
args = parser.parse_args()

if len(args.img)!=len(args.mask):
    print "ERROR: length of image and mask list is not equal ... exit"
    sys.exit()

for index, scan in enumerate(args.img):
    print scan+"           "+args.mask[index]
    img = Image(img_filename=scan, mask_filename=args.mask[index], fwhm=args.fwhm)
    mat = img.image_mat_in_mask_normalised
    pca = PCA(n_components=args.n, whiten=True)
    mat_reduced = pca.fit_transform(mat)
    #print "Variance explained "+str(pca.explained_variance_ratio_)
    f = open((scan[0:scan.find('.nii')]+'.pca.txt'),'w')
    f.write(str(pca.explained_variance_ratio_))
    f.close()
    img.write_decomposition(maps=mat_reduced.T,filename=(scan[0:scan.find('.nii')]+'.pca_reduced.nii.gz'),normalise=False)
    #import pdb; pdb.set_trace()
开发者ID:cclairec,项目名称:fmri,代码行数:32,代码来源:preprocess_pca.py

示例2: xrange

# 需要导入模块: from Image import Image [as 别名]
# 或者: from Image.Image import write_decomposition [as 别名]
    control_vs_ad_t = np.zeros((53795,30))
    control_vs_ad_p = np.zeros((53795,30))
    for i in xrange(53795):
        for c in xrange(30):
            t, p = ttest_ind(group_sum[i,all_labels==1,c], group_sum[i,all_labels==3,c], equal_var=False)
            control_vs_ad_t[i,c] = t
            control_vs_ad_p[i,c] = p

    # alpha = 0.05
    # for c in xrange(30):
    #     t_bool, pcorr = tools.fdr(control_vs_ad_p[:,c].ravel(),alpha=alpha)
    #     control_vs_ad_t[t_bool==False,c]=0
    #     control_vs_ad_p[:,c] = pcorr

    decomp.write_decomposition(maps=control_vs_ad_t.T, filename='_ica_control_vs_ad_ttest.nii.gz', normalise=False)
    decomp.write_decomposition(maps=control_vs_ad_p.T, filename='_ica_control_vs_ad_ttest_p.nii.gz', normalise=False)


else:
    ########################################################################################################################
    ########################################################################################################################
    ######################################## COMPUTE INDIVIDUAL AND GROUP DECOMPOSITION ####################################
    ########################################################################################################################
    ########################################################################################################################
    all_labels = np.zeros((len(args.autoencoder)))
    all_decompositions = np.zeros((len(args.autoencoder),98,30))
    for index, scan in enumerate(args.autoencoder):
        print "Using scan: "+scan+" with atlas: "+args.atlas[index]
        first_point_index = scan.find('.')
        last_slash_index = scan.rfind('/')
开发者ID:cclairec,项目名称:fmri,代码行数:32,代码来源:group_difference.py

示例3: enumerate

# 需要导入模块: from Image import Image [as 别名]
# 或者: from Image.Image import write_decomposition [as 别名]
    # for weight_idx,weight in enumerate([0.5,0.1,0.05,0.01,0.001]):
    # 	filename = (scan[0:scan.find('.nii')]+'.fwhm'+str(args.fwhm)+'mm.'+'_backpropagation_groupbias.'+d[weight]+'.nii.gz')
    # 	print filename
    # 	ae_voxels_restricted=Autoencoder(img.image_mat_in_mask_normalised.shape[1], max_iter=args.maxiter, weight_decay_param=weight).fit(img.image_mat_in_mask_normalised.T, params_init_scan, params_bias_scan)
    # 	img.write_decomposition(maps=ae_voxels_restricted.components_,filename=filename,normalise=False)
    # 	#with open((filename[0:filename.find('.nii')]+'.evs.txt'), 'w') as f:
	# #    	f.write('%f' % evs(img.image_mat_in_mask_normalised.T.ravel(), ae_voxels_restricted.x_mat_tilde.ravel()))
    #
	# stats[index,weight_idx]=evs(img.image_mat_in_mask_normalised.T.ravel(), ae_voxels_restricted.x_mat_tilde.ravel())
    # 	print "error: "+str(evs(img.image_mat_in_mask_normalised.T.ravel(), ae_voxels_restricted.x_mat_tilde.ravel()))

    # ... and without

    filename = (scan[0:scan.find('.nii')]+'.fwhm'+str(args.fwhm)+'mm.'+'_backpropagation_groupbias_rica.reference.nii.gz')
    rica=RICA(img.image_mat_in_mask_normalised.shape[1], max_iter=args.maxiter, weight_decay_param=args.weight_decay).fit(img.image_mat_in_mask_normalised.T, params_init_scan_rica, optimization=False)
    img.write_decomposition(maps=rica.components_, filename=filename, normalise=True)

    filename = (scan[0:scan.find('.nii')]+'.fwhm'+str(args.fwhm)+'mm.'+'_backpropagation_groupbias_rica.'+str(args.weight_decay)+'.nii.gz')
    rica=RICA(img.image_mat_in_mask_normalised.shape[1], max_iter=args.maxiter, weight_decay_param=args.weight_decay).fit(img.image_mat_in_mask_normalised.T, params_init_scan_rica, params_bias_scan_rica, optimization=True)
    img.write_decomposition(maps=rica.components_, filename=filename, normalise=True)
    W_all_new[:, i:j] = rica.W 

    filename = (scan[0:scan.find('.nii')]+'.fwhm'+str(args.fwhm)+'mm.'+'_backpropagation_groupbias.reference.nii.gz')
    ae_voxels=Autoencoder(img.image_mat_in_mask_normalised.shape[1], max_iter=args.maxiter, weight_decay_param=args.weight_decay, second_nonlinear=True).fit(img.image_mat_in_mask_normalised.T, params_init_scan, optimization=False)
    img.write_decomposition(maps=ae_voxels.components_,filename=filename, normalise=False)

    filename = (scan[0:scan.find('.nii')]+'.fwhm'+str(args.fwhm)+'mm.'+'_backpropagation_groupbias.'+str(args.weight_decay)+'.nii.gz')
    ae_voxels=Autoencoder(img.image_mat_in_mask_normalised.shape[1], max_iter=args.maxiter, weight_decay_param=args.weight_decay, second_nonlinear=True).fit(img.image_mat_in_mask_normalised.T, params_init_scan, params_bias_scan, optimization=True)
    img.write_decomposition(maps=ae_voxels.components_,filename=filename, normalise=False)

    break
开发者ID:cclairec,项目名称:fmri,代码行数:33,代码来源:group_autoencoder_backpropagation.py


注:本文中的Image.Image.write_decomposition方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。