当前位置: 首页>>代码示例>>Python>>正文


Python ConfigurationSpace.add_condition方法代码示例

本文整理汇总了Python中HPOlibConfigSpace.configuration_space.ConfigurationSpace.add_condition方法的典型用法代码示例。如果您正苦于以下问题:Python ConfigurationSpace.add_condition方法的具体用法?Python ConfigurationSpace.add_condition怎么用?Python ConfigurationSpace.add_condition使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在HPOlibConfigSpace.configuration_space.ConfigurationSpace的用法示例。


在下文中一共展示了ConfigurationSpace.add_condition方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_hyperparameter_search_space

# 需要导入模块: from HPOlibConfigSpace.configuration_space import ConfigurationSpace [as 别名]
# 或者: from HPOlibConfigSpace.configuration_space.ConfigurationSpace import add_condition [as 别名]
    def get_hyperparameter_search_space(dataset_properties=None):
        C = UniformFloatHyperparameter("C", 0.03125, 32768, log=True, default=1.0)
        # No linear kernel here, because we have liblinear
        kernel = CategoricalHyperparameter(name="kernel", choices=["rbf", "poly", "sigmoid"], default="rbf")
        degree = UniformIntegerHyperparameter("degree", 1, 5, default=3)
        gamma = UniformFloatHyperparameter("gamma", 3.0517578125e-05, 8, log=True, default=0.1)
        # TODO this is totally ad-hoc
        coef0 = UniformFloatHyperparameter("coef0", -1, 1, default=0)
        # probability is no hyperparameter, but an argument to the SVM algo
        shrinking = CategoricalHyperparameter("shrinking", ["True", "False"], default="True")
        tol = UniformFloatHyperparameter("tol", 1e-5, 1e-1, default=1e-4, log=True)
        # cache size is not a hyperparameter, but an argument to the program!
        max_iter = UnParametrizedHyperparameter("max_iter", -1)

        cs = ConfigurationSpace()
        cs.add_hyperparameter(C)
        cs.add_hyperparameter(kernel)
        cs.add_hyperparameter(degree)
        cs.add_hyperparameter(gamma)
        cs.add_hyperparameter(coef0)
        cs.add_hyperparameter(shrinking)
        cs.add_hyperparameter(tol)
        cs.add_hyperparameter(max_iter)

        degree_depends_on_poly = EqualsCondition(degree, kernel, "poly")
        coef0_condition = InCondition(coef0, kernel, ["poly", "sigmoid"])
        cs.add_condition(degree_depends_on_poly)
        cs.add_condition(coef0_condition)

        return cs
开发者ID:automl,项目名称:paramsklearn,代码行数:32,代码来源:libsvm_svc.py

示例2: get_hyperparameter_search_space

# 需要导入模块: from HPOlibConfigSpace.configuration_space import ConfigurationSpace [as 别名]
# 或者: from HPOlibConfigSpace.configuration_space.ConfigurationSpace import add_condition [as 别名]
    def get_hyperparameter_search_space(dataset_properties=None):
        cs = ConfigurationSpace()
        loss = cs.add_hyperparameter(CategoricalHyperparameter(
            "loss", ["ls", "lad", "huber", "quantile"], default="ls"))
        learning_rate = cs.add_hyperparameter(UniformFloatHyperparameter(
            name="learning_rate", lower=0.0001, upper=1, default=0.1, log=True))
        n_estimators = cs.add_hyperparameter(Constant("n_estimators", 100))
        max_depth = cs.add_hyperparameter(UniformIntegerHyperparameter(
            name="max_depth", lower=1, upper=10, default=3))
        min_samples_split = cs.add_hyperparameter(UniformIntegerHyperparameter(
            name="min_samples_split", lower=2, upper=20, default=2, log=False))
        min_samples_leaf = cs.add_hyperparameter(UniformIntegerHyperparameter(
            name="min_samples_leaf", lower=1, upper=20, default=1, log=False))
        min_weight_fraction_leaf = cs.add_hyperparameter(
            UnParametrizedHyperparameter("min_weight_fraction_leaf", 0.))
        subsample = cs.add_hyperparameter(UniformFloatHyperparameter(
            name="subsample", lower=0.01, upper=1.0, default=1.0, log=False))
        max_features = cs.add_hyperparameter(UniformFloatHyperparameter(
            "max_features", 0.5, 5, default=1))
        max_leaf_nodes = cs.add_hyperparameter(UnParametrizedHyperparameter(
            name="max_leaf_nodes", value="None"))
        alpha = cs.add_hyperparameter(UniformFloatHyperparameter(
            "alpha", lower=0.75, upper=0.99, default=0.9))

        cs.add_condition(InCondition(alpha, loss, ['huber', 'quantile']))
        return cs
开发者ID:stokasto,项目名称:auto-sklearn,代码行数:28,代码来源:gradient_boosting.py

示例3: get_hyperparameter_search_space

# 需要导入模块: from HPOlibConfigSpace.configuration_space import ConfigurationSpace [as 别名]
# 或者: from HPOlibConfigSpace.configuration_space.ConfigurationSpace import add_condition [as 别名]
 def get_hyperparameter_search_space(dataset_properties=None):
     cs = ConfigurationSpace()
     use_minimum_fraction = cs.add_hyperparameter(CategoricalHyperparameter(
         "use_minimum_fraction", ["True", "False"], default="True"))
     minimum_fraction = cs.add_hyperparameter(UniformFloatHyperparameter(
         "minimum_fraction", lower=.0001, upper=0.5, default=0.01, log=True))
     cs.add_condition(EqualsCondition(minimum_fraction,
                                      use_minimum_fraction, 'True'))
     return cs
开发者ID:automl,项目名称:paramsklearn,代码行数:11,代码来源:one_hot_encoding.py

示例4: test_hyperparameters_with_valid_condition

# 需要导入模块: from HPOlibConfigSpace.configuration_space import ConfigurationSpace [as 别名]
# 或者: from HPOlibConfigSpace.configuration_space.ConfigurationSpace import add_condition [as 别名]
 def test_hyperparameters_with_valid_condition(self):
     cs = ConfigurationSpace()
     hp1 = CategoricalHyperparameter("parent", [0, 1])
     cs.add_hyperparameter(hp1)
     hp2 = UniformIntegerHyperparameter("child", 0, 10)
     cs.add_hyperparameter(hp2)
     cond = EqualsCondition(hp2, hp1, 0)
     cs.add_condition(cond)
     self.assertEqual(len(cs._hyperparameters), 2)
开发者ID:automl,项目名称:HPOlibConfigSpace,代码行数:11,代码来源:test_configuration_space.py

示例5: test_get_conditions

# 需要导入模块: from HPOlibConfigSpace.configuration_space import ConfigurationSpace [as 别名]
# 或者: from HPOlibConfigSpace.configuration_space.ConfigurationSpace import add_condition [as 别名]
 def test_get_conditions(self):
     cs = ConfigurationSpace()
     hp1 = CategoricalHyperparameter("parent", [0, 1])
     cs.add_hyperparameter(hp1)
     hp2 = UniformIntegerHyperparameter("child", 0, 10)
     cs.add_hyperparameter(hp2)
     self.assertEqual([], cs.get_conditions())
     cond1 = EqualsCondition(hp2, hp1, 0)
     cs.add_condition(cond1)
     self.assertEqual([cond1], cs.get_conditions())
开发者ID:automl,项目名称:HPOlibConfigSpace,代码行数:12,代码来源:test_configuration_space.py

示例6: get_hyperparameter_search_space

# 需要导入模块: from HPOlibConfigSpace.configuration_space import ConfigurationSpace [as 别名]
# 或者: from HPOlibConfigSpace.configuration_space.ConfigurationSpace import add_condition [as 别名]
    def get_hyperparameter_search_space(dataset_properties=None):
        cs = ConfigurationSpace()
        shrinkage = cs.add_hyperparameter(
            CategoricalHyperparameter("shrinkage", ["None", "auto", "manual"], default="None")
        )
        shrinkage_factor = cs.add_hyperparameter(UniformFloatHyperparameter("shrinkage_factor", 0.0, 1.0, 0.5))
        n_components = cs.add_hyperparameter(UniformIntegerHyperparameter("n_components", 1, 250, default=10))
        tol = cs.add_hyperparameter(UniformFloatHyperparameter("tol", 1e-5, 1e-1, default=1e-4, log=True))

        cs.add_condition(EqualsCondition(shrinkage_factor, shrinkage, "manual"))
        return cs
开发者ID:hmendozap,项目名称:auto-sklearn,代码行数:13,代码来源:lda.py

示例7: test_condition_with_cycles

# 需要导入模块: from HPOlibConfigSpace.configuration_space import ConfigurationSpace [as 别名]
# 或者: from HPOlibConfigSpace.configuration_space.ConfigurationSpace import add_condition [as 别名]
 def test_condition_with_cycles(self):
     cs = ConfigurationSpace()
     hp1 = CategoricalHyperparameter("parent", [0, 1])
     cs.add_hyperparameter(hp1)
     hp2 = UniformIntegerHyperparameter("child", 0, 10)
     cs.add_hyperparameter(hp2)
     cond1 = EqualsCondition(hp2, hp1, 0)
     cs.add_condition(cond1)
     cond2 = EqualsCondition(hp1, hp2, 0)
     self.assertRaisesRegexp(ValueError, "Hyperparameter configuration "
                             "contains a cycle \[\['child', 'parent'\]\]",
                             cs.add_condition, cond2)
开发者ID:automl,项目名称:HPOlibConfigSpace,代码行数:14,代码来源:test_configuration_space.py

示例8: test_get_hyperparameters

# 需要导入模块: from HPOlibConfigSpace.configuration_space import ConfigurationSpace [as 别名]
# 或者: from HPOlibConfigSpace.configuration_space.ConfigurationSpace import add_condition [as 别名]
 def test_get_hyperparameters(self):
     cs = ConfigurationSpace()
     self.assertEqual(0, len(cs.get_hyperparameters()))
     hp1 = CategoricalHyperparameter("parent", [0, 1])
     cs.add_hyperparameter(hp1)
     self.assertEqual([hp1], cs.get_hyperparameters())
     hp2 = UniformIntegerHyperparameter("child", 0, 10)
     cs.add_hyperparameter(hp2)
     cond1 = EqualsCondition(hp2, hp1, 1)
     cs.add_condition(cond1)
     self.assertEqual([hp1, hp2], cs.get_hyperparameters())
     # TODO: I need more tests for the topological sort!
     self.assertEqual([hp1, hp2], cs.get_hyperparameters())
开发者ID:automl,项目名称:HPOlibConfigSpace,代码行数:15,代码来源:test_configuration_space.py

示例9: get_hyperparameter_search_space

# 需要导入模块: from HPOlibConfigSpace.configuration_space import ConfigurationSpace [as 别名]
# 或者: from HPOlibConfigSpace.configuration_space.ConfigurationSpace import add_condition [as 别名]
    def get_hyperparameter_search_space(dataset_properties=None):
        # Copied from libsvm_c
        C = UniformFloatHyperparameter(
            name="C", lower=0.03125, upper=32768, log=True, default=1.0)

        kernel = CategoricalHyperparameter(
            name="kernel", choices=['linear', 'poly', 'rbf', 'sigmoid'],
            default="rbf")
        degree = UniformIntegerHyperparameter(
            name="degree", lower=1, upper=5, default=3)

        # Changed the gamma value to 0.0 (is 0.1 for classification)
        gamma = UniformFloatHyperparameter(
            name="gamma", lower=3.0517578125e-05, upper=8, log=True, default=0.1)

        # TODO this is totally ad-hoc
        coef0 = UniformFloatHyperparameter(
            name="coef0", lower=-1, upper=1, default=0)
        # probability is no hyperparameter, but an argument to the SVM algo
        shrinking = CategoricalHyperparameter(
            name="shrinking", choices=["True", "False"], default="True")
        tol = UniformFloatHyperparameter(
            name="tol", lower=1e-5, upper=1e-1, default=1e-3, log=True)
        max_iter = UnParametrizedHyperparameter("max_iter", -1)

        # Random Guess
        epsilon = UniformFloatHyperparameter(name="epsilon", lower=0.001,
                                             upper=1, default=0.1, log=True)
        cs = ConfigurationSpace()
        cs.add_hyperparameter(C)
        cs.add_hyperparameter(kernel)
        cs.add_hyperparameter(degree)
        cs.add_hyperparameter(gamma)
        cs.add_hyperparameter(coef0)
        cs.add_hyperparameter(shrinking)
        cs.add_hyperparameter(tol)
        cs.add_hyperparameter(max_iter)
        cs.add_hyperparameter(epsilon)

        degree_depends_on_kernel = InCondition(child=degree, parent=kernel,
                                               values=('poly', 'rbf', 'sigmoid'))
        gamma_depends_on_kernel = InCondition(child=gamma, parent=kernel,
                                              values=('poly', 'rbf'))
        coef0_depends_on_kernel = InCondition(child=coef0, parent=kernel,
                                              values=('poly', 'sigmoid'))
        cs.add_condition(degree_depends_on_kernel)
        cs.add_condition(gamma_depends_on_kernel)
        cs.add_condition(coef0_depends_on_kernel)
        return cs
开发者ID:Allen1203,项目名称:auto-sklearn,代码行数:51,代码来源:libsvm_svr.py

示例10: get_hyperparameter_search_space

# 需要导入模块: from HPOlibConfigSpace.configuration_space import ConfigurationSpace [as 别名]
# 或者: from HPOlibConfigSpace.configuration_space.ConfigurationSpace import add_condition [as 别名]
    def get_hyperparameter_search_space(dataset_properties=None):
        cs = ConfigurationSpace()

        n_components = cs.add_hyperparameter(UniformIntegerHyperparameter(
            "n_components", 10, 2000, default=100))
        algorithm = cs.add_hyperparameter(CategoricalHyperparameter('algorithm',
            ['parallel', 'deflation'], 'parallel'))
        whiten = cs.add_hyperparameter(CategoricalHyperparameter('whiten',
            ['False', 'True'], 'False'))
        fun = cs.add_hyperparameter(CategoricalHyperparameter(
            'fun', ['logcosh', 'exp', 'cube'], 'logcosh'))

        cs.add_condition(EqualsCondition(n_components, whiten, "True"))

        return cs
开发者ID:automl,项目名称:paramsklearn,代码行数:17,代码来源:fast_ica.py

示例11: get_hyperparameter_search_space

# 需要导入模块: from HPOlibConfigSpace.configuration_space import ConfigurationSpace [as 别名]
# 或者: from HPOlibConfigSpace.configuration_space.ConfigurationSpace import add_condition [as 别名]
    def get_hyperparameter_search_space(dataset_properties=None):
        cs = ConfigurationSpace()

        loss = cs.add_hyperparameter(CategoricalHyperparameter("loss",
            ["squared_loss", "huber", "epsilon_insensitive", "squared_epsilon_insensitive"],
            default="squared_loss"))
        penalty = cs.add_hyperparameter(CategoricalHyperparameter(
            "penalty", ["l1", "l2", "elasticnet"], default="l2"))
        alpha = cs.add_hyperparameter(UniformFloatHyperparameter(
            "alpha", 10e-7, 1e-1, log=True, default=0.01))
        l1_ratio = cs.add_hyperparameter(UniformFloatHyperparameter(
            "l1_ratio", 1e-9, 1., log=True, default=0.15))
        fit_intercept = cs.add_hyperparameter(UnParametrizedHyperparameter(
            "fit_intercept", "True"))
        n_iter = cs.add_hyperparameter(UniformIntegerHyperparameter(
            "n_iter", 5, 1000, log=True, default=20))
        epsilon = cs.add_hyperparameter(UniformFloatHyperparameter(
            "epsilon", 1e-5, 1e-1, default=1e-4, log=True))
        learning_rate = cs.add_hyperparameter(CategoricalHyperparameter(
            "learning_rate", ["optimal", "invscaling", "constant"],
            default="optimal"))
        eta0 = cs.add_hyperparameter(UniformFloatHyperparameter(
            "eta0", 10 ** -7, 0.1, default=0.01))
        power_t = cs.add_hyperparameter(UniformFloatHyperparameter(
            "power_t", 1e-5, 1, default=0.5))
        average = cs.add_hyperparameter(CategoricalHyperparameter(
            "average", ["False", "True"], default="False"))

        # TODO add passive/aggressive here, although not properly documented?
        elasticnet = EqualsCondition(l1_ratio, penalty, "elasticnet")
        epsilon_condition = InCondition(epsilon, loss,
            ["huber", "epsilon_insensitive", "squared_epsilon_insensitive"])
        # eta0 seems to be always active according to the source code; when
        # learning_rate is set to optimial, eta0 is the starting value:
        # https://github.com/scikit-learn/scikit-learn/blob/0.15.X/sklearn/linear_model/sgd_fast.pyx
        # eta0_and_inv = EqualsCondition(eta0, learning_rate, "invscaling")
        #eta0_and_constant = EqualsCondition(eta0, learning_rate, "constant")
        #eta0_condition = OrConjunction(eta0_and_inv, eta0_and_constant)
        power_t_condition = EqualsCondition(power_t, learning_rate,
                                            "invscaling")

        cs.add_condition(elasticnet)
        cs.add_condition(epsilon_condition)
        cs.add_condition(power_t_condition)

        return cs
开发者ID:stokasto,项目名称:auto-sklearn,代码行数:48,代码来源:sgd.py

示例12: test_repr

# 需要导入模块: from HPOlibConfigSpace.configuration_space import ConfigurationSpace [as 别名]
# 或者: from HPOlibConfigSpace.configuration_space.ConfigurationSpace import add_condition [as 别名]
    def test_repr(self):
        cs1 = ConfigurationSpace()
        retval = cs1.__str__()
        self.assertEqual("Configuration space object:\n  Hyperparameters:\n",
                         retval)

        hp1 = CategoricalHyperparameter("parent", [0, 1])
        cs1.add_hyperparameter(hp1)
        retval = cs1.__str__()
        self.assertEqual("Configuration space object:\n  Hyperparameters:\n"
                         "    %s\n" % str(hp1), retval)

        hp2 = UniformIntegerHyperparameter("child", 0, 10)
        cond1 = EqualsCondition(hp2, hp1, 0)
        cs1.add_hyperparameter(hp2)
        cs1.add_condition(cond1)
        retval = cs1.__str__()
        self.assertEqual("Configuration space object:\n  Hyperparameters:\n"
                         "    %s\n    %s\n  Conditions:\n    %s\n" %
                         (str(hp2), str(hp1), str(cond1)), retval)
开发者ID:automl,项目名称:HPOlibConfigSpace,代码行数:22,代码来源:test_configuration_space.py

示例13: test_add_conjunction

# 需要导入模块: from HPOlibConfigSpace.configuration_space import ConfigurationSpace [as 别名]
# 或者: from HPOlibConfigSpace.configuration_space.ConfigurationSpace import add_condition [as 别名]
    def test_add_conjunction(self):
        hp1 = CategoricalHyperparameter("input1", [0, 1])
        hp2 = CategoricalHyperparameter("input2", [0, 1])
        hp3 = CategoricalHyperparameter("input3", [0, 1])
        hp4 = Constant("And", "True")

        cond1 = EqualsCondition(hp4, hp1, 1)
        cond2 = EqualsCondition(hp4, hp2, 1)
        cond3 = EqualsCondition(hp4, hp3, 1)

        andconj1 = AndConjunction(cond1, cond2, cond3)

        cs = ConfigurationSpace()
        cs.add_hyperparameter(hp1)
        cs.add_hyperparameter(hp2)
        cs.add_hyperparameter(hp3)
        cs.add_hyperparameter(hp4)

        cs.add_condition(andconj1)
        self.assertNotIn(hp4, cs.get_all_uncoditional_hyperparameters())
开发者ID:automl,项目名称:HPOlibConfigSpace,代码行数:22,代码来源:test_configuration_space.py

示例14: test_add_second_condition_wo_conjunction

# 需要导入模块: from HPOlibConfigSpace.configuration_space import ConfigurationSpace [as 别名]
# 或者: from HPOlibConfigSpace.configuration_space.ConfigurationSpace import add_condition [as 别名]
    def test_add_second_condition_wo_conjunction(self):
        hp1 = CategoricalHyperparameter("input1", [0, 1])
        hp2 = CategoricalHyperparameter("input2", [0, 1])
        hp3 = Constant("And", "True")

        cond1 = EqualsCondition(hp3, hp1, 1)
        cond2 = EqualsCondition(hp3, hp2, 1)

        cs = ConfigurationSpace()
        cs.add_hyperparameter(hp1)
        cs.add_hyperparameter(hp2)
        cs.add_hyperparameter(hp3)

        cs.add_condition(cond1)
        self.assertRaisesRegexp(ValueError,
                                "Adding a second condition \(different\) for a "
                                "hyperparameter is ambigouos and "
                                "therefore forbidden. Add a conjunction "
                                "instead!",
                                cs.add_condition, cond2)
开发者ID:automl,项目名称:HPOlibConfigSpace,代码行数:22,代码来源:test_configuration_space.py

示例15: test_check_configuration2

# 需要导入模块: from HPOlibConfigSpace.configuration_space import ConfigurationSpace [as 别名]
# 或者: from HPOlibConfigSpace.configuration_space.ConfigurationSpace import add_condition [as 别名]
    def test_check_configuration2(self):
        # Test that hyperparameters which are not active must not be set and
        # that evaluating forbidden clauses does not choke on missing
        # hyperparameters
        cs = ConfigurationSpace()
        classifier = CategoricalHyperparameter("classifier",
            ["k_nearest_neighbors", "extra_trees"])
        metric = CategoricalHyperparameter("metric", ["minkowski", "other"])
        p = CategoricalHyperparameter("k_nearest_neighbors:p", [1, 2])
        metric_depends_on_classifier = EqualsCondition(metric, classifier,
                                                       "k_nearest_neighbors")
        p_depends_on_metric = EqualsCondition(p, metric, "minkowski")
        cs.add_hyperparameter(metric)
        cs.add_hyperparameter(p)
        cs.add_hyperparameter(classifier)
        cs.add_condition(metric_depends_on_classifier)
        cs.add_condition(p_depends_on_metric)

        forbidden = ForbiddenEqualsClause(metric, "other")
        cs.add_forbidden_clause(forbidden)

        configuration = Configuration(cs, dict(classifier="extra_trees"))
开发者ID:automl,项目名称:HPOlibConfigSpace,代码行数:24,代码来源:test_configuration_space.py


注:本文中的HPOlibConfigSpace.configuration_space.ConfigurationSpace.add_condition方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。