当前位置: 首页>>代码示例>>Python>>正文


Python configuration_space.ConfigurationSpace类代码示例

本文整理汇总了Python中HPOlibConfigSpace.configuration_space.ConfigurationSpace的典型用法代码示例。如果您正苦于以下问题:Python ConfigurationSpace类的具体用法?Python ConfigurationSpace怎么用?Python ConfigurationSpace使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了ConfigurationSpace类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_hyperparameter_search_space

    def get_hyperparameter_search_space(dataset_properties=None):
        cs = ConfigurationSpace()
        C = cs.add_hyperparameter(UniformFloatHyperparameter(
            "C", 0.03125, 32768, log=True, default=1.0))
        loss = cs.add_hyperparameter(CategoricalHyperparameter(
            "loss", ["epsilon_insensitive", "squared_epsilon_insensitive"],
            default="squared_epsilon_insensitive"))
        # Random Guess
        epsilon = cs.add_hyperparameter(UniformFloatHyperparameter(
            name="epsilon", lower=0.001, upper=1, default=0.1, log=True))
        dual = cs.add_hyperparameter(Constant("dual", "False"))
        # These are set ad-hoc
        tol = cs.add_hyperparameter(UniformFloatHyperparameter(
            "tol", 1e-5, 1e-1, default=1e-4, log=True))
        fit_intercept = cs.add_hyperparameter(Constant("fit_intercept", "True"))
        intercept_scaling = cs.add_hyperparameter(Constant(
            "intercept_scaling", 1))

        dual_and_loss = ForbiddenAndConjunction(
            ForbiddenEqualsClause(dual, "False"),
            ForbiddenEqualsClause(loss, "epsilon_insensitive")
        )
        cs.add_forbidden_clause(dual_and_loss)

        return cs
开发者ID:Allen1203,项目名称:auto-sklearn,代码行数:25,代码来源:liblinear_svr.py

示例2: get_hyperparameter_search_space

 def get_hyperparameter_search_space(dataset_properties=None):
     keep_variance = UniformFloatHyperparameter("keep_variance", 0.5, 0.9999, default=0.9999)
     whiten = CategoricalHyperparameter("whiten", ["False", "True"], default="False")
     cs = ConfigurationSpace()
     cs.add_hyperparameter(keep_variance)
     cs.add_hyperparameter(whiten)
     return cs
开发者ID:stokasto,项目名称:auto-sklearn,代码行数:7,代码来源:pca.py

示例3: get_hyperparameter_search_space

 def get_hyperparameter_search_space(dataset_properties=None):
     # TODO add replace by zero!
     strategy = CategoricalHyperparameter(
         "strategy", ["mean", "median", "most_frequent"], default="mean")
     cs = ConfigurationSpace()
     cs.add_hyperparameter(strategy)
     return cs
开发者ID:Allen1203,项目名称:auto-sklearn,代码行数:7,代码来源:imputation.py

示例4: get_hyperparameter_search_space

 def get_hyperparameter_search_space(dataset_properties=None):
     # TODO add replace by zero!
     strategy = CategoricalHyperparameter(
         "strategy", ["none", "weighting"], default="none")
     cs = ConfigurationSpace()
     cs.add_hyperparameter(strategy)
     return cs
开发者ID:stokasto,项目名称:auto-sklearn,代码行数:7,代码来源:balancing.py

示例5: test_add_forbidden

    def test_add_forbidden(self):
        m = numpy.ones([2, 3])
        preprocessors_list = ['pa', 'pb']
        classifier_list = ['ca', 'cb', 'cc']
        cs = ConfigurationSpace()
        preprocessor = CategoricalHyperparameter(name='preprocessor',
                                                 choices=preprocessors_list)
        classifier = CategoricalHyperparameter(name='classifier',
                                               choices=classifier_list)
        cs.add_hyperparameter(preprocessor)
        cs.add_hyperparameter(classifier)
        new_cs = autosklearn.pipeline.create_searchspace_util.add_forbidden(
            conf_space=cs, node_0_list=preprocessors_list,
            node_1_list=classifier_list, matches=m,
            node_0_name='preprocessor', node_1_name="classifier")
        self.assertEqual(len(new_cs.forbidden_clauses), 0)
        self.assertIsInstance(new_cs, ConfigurationSpace)

        m[1, 1] = 0
        new_cs = autosklearn.pipeline.create_searchspace_util.add_forbidden(
            conf_space=cs, node_0_list=preprocessors_list,
            node_1_list=classifier_list, matches=m,
            node_0_name='preprocessor', node_1_name="classifier")
        self.assertEqual(len(new_cs.forbidden_clauses), 1)
        self.assertEqual(new_cs.forbidden_clauses[0].components[0].value, 'cb')
        self.assertEqual(new_cs.forbidden_clauses[0].components[1].value, 'pb')
        self.assertIsInstance(new_cs, ConfigurationSpace)
开发者ID:Allen1203,项目名称:auto-sklearn,代码行数:27,代码来源:test_create_searchspace_util_classification.py

示例6: test_write_log10

 def test_write_log10(self):
     expected = "a [10.0, 1000.0] [100.0]l"
     cs = ConfigurationSpace()
     cs.add_hyperparameter(
         UniformFloatHyperparameter("a", 10, 1000, log=True))
     value = pcs_parser.write(cs)
     self.assertEqual(expected, value)
开发者ID:automl,项目名称:HPOlibConfigSpace,代码行数:7,代码来源:test_pcs_converter.py

示例7: test_write_q_float

 def test_write_q_float(self):
     expected = "Q16_float_a [16.0, 1024.0] [520.0]"
     cs = ConfigurationSpace()
     cs.add_hyperparameter(
         UniformFloatHyperparameter("float_a", 16, 1024, q=16))
     value = pcs_parser.write(cs)
     self.assertEqual(expected, value)
开发者ID:automl,项目名称:HPOlibConfigSpace,代码行数:7,代码来源:test_pcs_converter.py

示例8: test_write_q_int

 def test_write_q_int(self):
     expected = "Q16_int_a [16, 1024] [520]i"
     cs = ConfigurationSpace()
     cs.add_hyperparameter(
         UniformIntegerHyperparameter("int_a", 16, 1024, q=16))
     value = pcs_parser.write(cs)
     self.assertEqual(expected, value)
开发者ID:automl,项目名称:HPOlibConfigSpace,代码行数:7,代码来源:test_pcs_converter.py

示例9: get_hyperparameter_search_space

 def get_hyperparameter_search_space(dataset_properties=None):
     N = UniformIntegerHyperparameter("N", 5, 20, default=10)
     precond = UniformFloatHyperparameter("precond", 0, 0.5, default=0.1)
     cs = ConfigurationSpace()
     cs.add_hyperparameter(N)
     cs.add_hyperparameter(precond)
     return cs
开发者ID:Allen1203,项目名称:auto-sklearn,代码行数:7,代码来源:gem.py

示例10: get_hyperparameter_search_space

 def get_hyperparameter_search_space(dataset_properties=None):
     gamma = UniformFloatHyperparameter("gamma", 0.3, 2.0, default=1.0)
     n_components = UniformIntegerHyperparameter("n_components", 50, 10000, default=100, log=True)
     cs = ConfigurationSpace()
     cs.add_hyperparameter(gamma)
     cs.add_hyperparameter(n_components)
     return cs
开发者ID:stokasto,项目名称:auto-sklearn,代码行数:7,代码来源:kitchen_sinks.py

示例11: test_add_hyperparameters_with_equal_names

 def test_add_hyperparameters_with_equal_names(self):
     cs = ConfigurationSpace()
     hp = UniformIntegerHyperparameter("name", 0, 10)
     cs.add_hyperparameter(hp)
     self.assertRaisesRegexp(ValueError,
                             "Hyperparameter 'name' is already in the "
                             "configuration space.",
                             cs.add_hyperparameter, hp)
开发者ID:automl,项目名称:HPOlibConfigSpace,代码行数:8,代码来源:test_configuration_space.py

示例12: get_hyperparameter_search_space

 def get_hyperparameter_search_space(dataset_properties=None):
     cs = ConfigurationSpace()
     use_minimum_fraction = cs.add_hyperparameter(CategoricalHyperparameter(
         "use_minimum_fraction", ["True", "False"], default="True"))
     minimum_fraction = cs.add_hyperparameter(UniformFloatHyperparameter(
         "minimum_fraction", lower=.0001, upper=0.5, default=0.01, log=True))
     cs.add_condition(EqualsCondition(minimum_fraction,
                                      use_minimum_fraction, 'True'))
     return cs
开发者ID:automl,项目名称:paramsklearn,代码行数:9,代码来源:one_hot_encoding.py

示例13: get_hyperparameter_search_space

 def get_hyperparameter_search_space(dataset_properties=None):
     cs = ConfigurationSpace()
     alpha = cs.add_hyperparameter(UniformFloatHyperparameter(
         "alpha", 10 ** -5, 10., log=True, default=1.))
     fit_intercept = cs.add_hyperparameter(UnParametrizedHyperparameter(
         "fit_intercept", "True"))
     tol = cs.add_hyperparameter(UniformFloatHyperparameter(
         "tol", 1e-5, 1e-1, default=1e-4, log=True))
     return cs
开发者ID:dongzhixiang,项目名称:paramsklearn,代码行数:9,代码来源:ridge_regression.py

示例14: get_hyperparameter_search_space

    def get_hyperparameter_search_space(dataset_properties=None):
        percentile = UniformFloatHyperparameter("percentile", lower=1, upper=99, default=50)

        score_func = UnParametrizedHyperparameter(name="score_func", value="f_regression")

        cs = ConfigurationSpace()
        cs.add_hyperparameter(percentile)
        cs.add_hyperparameter(score_func)
        return cs
开发者ID:stokasto,项目名称:auto-sklearn,代码行数:9,代码来源:select_percentile_regression.py

示例15: get_hyperparameter_search_space

    def get_hyperparameter_search_space(dataset_properties=None):
        cs = ConfigurationSpace()
        n_iter = cs.add_hyperparameter(
                UnParametrizedHyperparameter("n_iter", value=300))
        tol = cs.add_hyperparameter(
                UniformFloatHyperparameter("tol", 10 ** -5, 10 ** -1,
                                           default=10 ** -4, log=True))
        alpha_1 = cs.add_hyperparameter(
                UniformFloatHyperparameter(name="alpha_1", lower=10 ** -10,
                                           upper=10 ** -3, default=10 ** -6))
        alpha_2 = cs.add_hyperparameter(
                UniformFloatHyperparameter(name="alpha_2", log=True,
                                           lower=10 ** -10, upper=10 ** -3,
                                           default=10 ** -6))
        lambda_1 = cs.add_hyperparameter(
                UniformFloatHyperparameter(name="lambda_1", log=True,
                                           lower=10 ** -10, upper=10 ** -3,
                                           default=10 ** -6))
        lambda_2 = cs.add_hyperparameter(
                UniformFloatHyperparameter(name="lambda_2", log=True,
                                           lower=10 ** -10, upper=10 ** -3,
                                           default=10 ** -6))
        threshold_lambda = cs.add_hyperparameter(
                UniformFloatHyperparameter(name="threshold_lambda",
                                           log=True,
                                           lower=10 ** 3,
                                           upper=10 ** 5,
                                           default=10 ** 4))
        fit_intercept = cs.add_hyperparameter(UnParametrizedHyperparameter(
            "fit_intercept", "True"))

        return cs
开发者ID:Allen1203,项目名称:auto-sklearn,代码行数:32,代码来源:ard_regression.py


注:本文中的HPOlibConfigSpace.configuration_space.ConfigurationSpace类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。