当前位置: 首页>>代码示例>>Python>>正文


Python AIPSTask.aparm[2]方法代码示例

本文整理汇总了Python中AIPSTask.AIPSTask.aparm[2]方法的典型用法代码示例。如果您正苦于以下问题:Python AIPSTask.aparm[2]方法的具体用法?Python AIPSTask.aparm[2]怎么用?Python AIPSTask.aparm[2]使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在AIPSTask.AIPSTask的用法示例。


在下文中一共展示了AIPSTask.aparm[2]方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: runsplat

# 需要导入模块: from AIPSTask import AIPSTask [as 别名]
# 或者: from AIPSTask.AIPSTask import aparm[2] [as 别名]
def runsplat(uvdata, outchan, tint, sbandl, sbandu, smootha, smoothb, smoothc, indisk):
	splat = AIPSTask('SPLAT')
	splat.indata = uvdata
	splat.outname = uvdata.name
	splat.outdisk = indisk
	splat.outclass = 'SPLAT'
	splat.outseq = uvdata.seq
	splat.solint = 0
	if outchan != -1 :
		aparm1 = 3
		splat.channel = uvdata.header['naxis'][2] / outchan
		splat.chinc = uvdata.header['naxis'][2] / outchan
	if tint != -1 :
		splat.solint = tint / 60
	splat.bif = sbandl # SBLANL -- Lower sub-band for extraction
	splat.eif = sbandu # SBANDU - Upper sub-band for extraction
	splat.douvcomp = -1
	splat.aparm[1] = 3
	splat.aparm[2] = 1
	# Smoothing options!?!?
	splat.smooth[1] = smootha # 1 = hanning default
	splat.smooth[2] = smoothb # 4 = hanning default
	splat.smooth[3] = smoothc # 1 = hanning default
	splat.flagver = 0
	splat.go()
开发者ID:h-ramp,项目名称:pipeline,代码行数:27,代码来源:eMERLIN_tasks.py

示例2: float

# 需要导入模块: from AIPSTask import AIPSTask [as 别名]
# 或者: from AIPSTask.AIPSTask import aparm[2] [as 别名]
    # Go through baselines and clip those visibilies that
    # still get through at > 4x the mean clean level 

    for ib in np.arange(1,nbas):
        ant1 = base_ant[ib][0]
        ant2 = base_ant[ib][1]

        clip.antennas[1] = ant1
        clip.antennas[2] = 0

        clip.baseline[1] = ant2
        clip.baseline[2] = 0

        clip.stokes = 'RR'
        clip.aparm[1] = float(lev0[ib]*4)
        clip.aparm[2] = float(lev0[ib]*4)
        clip.aparm[3] = 0.0
        clip.aparm[4] = 0.0
        clip.go()

        clip.stokes = 'LL'
        clip.aparm[1] = float(lev1[ib]*4)
        clip.aparm[2] = float(lev1[ib]*4)
        clip.aparm[3] = 0.0
        clip.aparm[4] = 0.0
        clip.go()

    
#    uvdata = AIPSUVData(src,'UVCOPY',dsk,1)
#    uvdata.rename(klass='UVDATA')
开发者ID:DrWhatson,项目名称:eMERLIN_RFI_flagger,代码行数:32,代码来源:apply_flags.py

示例3:

# 需要导入模块: from AIPSTask import AIPSTask [as 别名]
# 或者: from AIPSTask.AIPSTask import aparm[2] [as 别名]
refChan = refChan/nAverage

# Now make an image using the last entry in the catalog
sdgrd.indisk=mydisk
sdgrd.outdisk=mydisk
sdgrd.inname=AIPSCat()[mydisk][-1].name
sdgrd.inclass=AIPSCat()[mydisk][-1].klass
sdgrd.inseq=AIPSCat()[mydisk][-1].seq
sdgrd.optype='-GLS'
sdgrd.xtype=-12
sdgrd.ytype=-12
sdgrd.reweight[1] = 0
sdgrd.reweight[2] = 0.025
# must break up RA into hours minutes seconds
sdgrd.aparm[1]=math.floor(raDeg/15.)
sdgrd.aparm[2]=math.floor(((raDeg/15.)-sdgrd.aparm[1])*60.)
sdgrd.aparm[3]=round(((((raDeg/15.)-sdgrd.aparm[1])*60.)-sdgrd.aparm[2])*60.)
#now break up degrees, but must preserve sign
decSign = 1.
if decDeg < 0.:
    decSign = -1.
    decDeg = -1. * decDeg

sdgrd.aparm[4]=math.floor(decDeg)
sdgrd.aparm[5]=math.floor((decDeg-sdgrd.aparm[4])*60.)
sdgrd.aparm[6]=round((((decDeg-sdgrd.aparm[4])*60.)-sdgrd.aparm[5])*60.)
#now deal with degrees and/or minutes == 0
if decSign < 0.:
    sdgrd.aparm[4] = -1. * sdgrd.aparm[4]
    if sdgrd.aparm[4] == 0:
        sdgrd.aparm[5] = -1. * sdgrd.aparm[5]
开发者ID:jfoster17,项目名称:gbt-pipeline,代码行数:33,代码来源:imageW51.py

示例4: make_cube

# 需要导入模块: from AIPSTask import AIPSTask [as 别名]
# 或者: from AIPSTask.AIPSTask import aparm[2] [as 别名]
def make_cube(args):

    print_header("Making image cube")

    average_channels(args.average)

    sdgrd = AIPSTask("sdgrd")

    # Now make an image using the last entry in the catalog
    sdgrd.indisk = DISK_ID
    sdgrd.outdisk = DISK_ID
    sdgrd.baddisk[1] = BADDISK
    last = cat.last_entry()
    sdgrd.inname = last.name
    sdgrd.inclass = last.klass
    sdgrd.inseq = last.seq
    sdgrd.optype = "-GLS"
    sdgrd.reweight[1] = 0

    spectra = cat.get_uv(last)
    if "center" in args and args.center:
        raDeg, decDeg = args.center
    else:
        raDeg, decDeg = spectra.header.crval[3], spectra.header.crval[4]

    # must break up RA into hours minutes seconds
    hh, mm, ss = ra_deg2hms(raDeg)
    sdgrd.aparm[1] = hh
    sdgrd.aparm[2] = mm
    sdgrd.aparm[3] = ss

    # now break up degrees, but must preserve sign
    decSign = 1
    if decDeg < 0:
        decSign = -1
        decDeg = -1 * decDeg

    hh, mm, ss = dec_deg2hms(decDeg)
    sdgrd.aparm[4] = hh
    sdgrd.aparm[5] = mm
    sdgrd.aparm[6] = ss

    # deal with degrees and/or minutes == 0
    if decSign < 0.0:
        sdgrd.aparm[4] = -1 * sdgrd.aparm[4]
        if sdgrd.aparm[4] == 0:
            sdgrd.aparm[5] = -1 * sdgrd.aparm[5]
            if sdgrd.aparm[5] == 0:
                sdgrd.aparm[6] = -1 * sdgrd.aparm[6]

    print raDeg, decDeg, "->", sdgrd.aparm[1:7]

    # transfer cellsize
    cellsize = round(spectra.header.cdelt[4] * 3600.0)
    sdgrd.cellsize[1] = sdgrd.cellsize[2] = cellsize

    # sdgrd.xtype=-16         # sync/bessel convolving type
    sdgrd.xtype = -12  # gaussian convolving type

    # sync/bessel function parameters
    if sdgrd.xtype == -16:
        sdgrd.xparm[1] = 3.0 * cellsize
        sdgrd.xparm[2] = 2.5 * cellsize
        sdgrd.xparm[3] = 1.5 * cellsize
        sdgrd.xparm[4] = 2
        sdgrd.reweight[2] = 0.01

    # gaussian parameters
    if sdgrd.xtype == -12:
        sdgrd.xparm[1] = 5.0 * cellsize
        sdgrd.xparm[2] = 1.5 * cellsize  # Parameter sets Gaussian FWHM
        sdgrd.xparm[3] = 2
        sdgrd.xparm[4] = 0
        sdgrd.reweight[2] = -1.0e-6

    # always make a circuluar convolving function
    sdgrd.ytype = sdgrd.xtype

    if "size" in args and args.size:
        imxSize, imySize = args.size
    else:
        imxSize = (2 * round(spectra.header.crpix[3] / 1.95)) + 20
        imySize = (2 * round(spectra.header.crpix[4] / 1.95)) + 20

    print "Ra, Dec          : {0}, {1}".format(raDeg, decDeg)
    print "Image size (X,Y) : {0}, {1}".format(imxSize, imySize)
    print "Cell size        : {0}".format(cellsize)

    sdgrd.imsize[1] = imxSize
    sdgrd.imsize[2] = imySize
    sdgrd.go()

    seqno, restFreqHz = update_header(args)
    outcube = write_image_cube(restFreqHz, args.uniqueid)

    return seqno, restFreqHz, outcube
开发者ID:nrao,项目名称:gbt-pipeline,代码行数:98,代码来源:image.py

示例5: N

# 需要导入模块: from AIPSTask import AIPSTask [as 别名]
# 或者: from AIPSTask.AIPSTask import aparm[2] [as 别名]
subim.outclass='22'
subim.outdi=mydisk
subim.go()

#make a unit image for later use
comb.outdisk=mydisk
comb.indisk=mydisk
comb.inname=AIPSCat()[mydisk][-1].name
comb.inclass=AIPSCat()[mydisk][-1].klass
comb.inseq=AIPSCat()[mydisk][-1].seq
comb.in2disk=mydisk
comb.in2name=AIPSCat()[mydisk][-1].name
comb.in2class=AIPSCat()[mydisk][-1].klass
comb.in2seq=AIPSCat()[mydisk][-1].seq
comb.aparm[1]=1.
comb.aparm[2]=-1.
comb.aparm[3]=1.
comb.opcode='SUM'
comb.outcl='ONE'
comb.go()

#make a N(2,2) image
comb.aparm[1] = cLightKmS*(6./4.)*1.55e14/(restFreq22*restFreq22*1.E-9)
comb.aparm[2] = 1.E-10
comb.aparm[3] = 0
comb.aparm[4] = 0
comb.outcl='N(2,2)'
comb.opcode='SUM'
comb.go()

#make a N(1,1) image
开发者ID:jfoster17,项目名称:gbt-pipeline,代码行数:33,代码来源:tempNH3_1122.py


注:本文中的AIPSTask.AIPSTask.aparm[2]方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。